Skip to main content
Log in

Enhanced nonlinear disturbance observer based sliding mode control design for a fully active suspension system

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, a new adaptive sliding mode controller using an enhanced disturbance observer is proposed for active suspension. For acquiring the knowledge of the states, the use of sensors is avoided to reduce the designing cost. Instead of it, an ensemble Kalman filter is used for estimating the states. Chattering in the traditional sliding mode control method is minimized by introducing a continuous term in switching function. An enhanced nonlinear disturbance observer is designed to ensure the robustness of the proposed controller. Through rigorous analysis, the stability is proved using the Lyapunov method. To demonstrate the efficiency of the proposed controller, it is subjected to different road profiles in simulation and experimental setups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

Abbreviations

SMD:

Sprung mass displacement

SMV:

Sprung mass velocity

SMA:

Sprung mass acceleration

UMD:

Unsprung mass displacement

UMV:

Unsprung mass velocity

RSD:

Relative suspension deflection

RTD:

Relative tyre force

SMC:

Sliding mode control

ENKF:

Ensemble Kalman filter

ENDO:

Enhanced nonlinear disturbance observer

References

  1. Garrido H, Curadelli O, Ambrosini D (2018) On the assumed inherent stability of semi-active control systems. Eng Struct 159:286–298

    Article  Google Scholar 

  2. Funde J, Wani K, Dhote ND, Patil SA (2019) Performance analysis of semi-active suspension system based on suspension working space and dynamic tire deflection. In: Innovative design, analysis and development practices in aerospace and automotive engineering (I-DAD), vol 2019. Springer, Singapore, pp 1–15

  3. Zhang X-L, Zhang T, Nie J, Chen L (2018) A semiactive skyhook-inertance control strategy based on continuously adjustable inerter. Shock Vib 2018:1–8

  4. Sun W, Pan H, Gao H (2016) Filter-based adaptive vibration control for active vehicle suspensions with electrohydraulic actuators. IEEE Trans Veh Technol 65(6):4619–4626

    Article  Google Scholar 

  5. Choi HD, Ahn CK, Lim MT, Song MK (2016) Dynamic output-feedback h8 control for active half-vehicle suspension systems with time-varying input delay. Int J Control Autom Syst 14(1):59–68

    Article  Google Scholar 

  6. Rizvi SMH, Abid M, Khan AQ, Satti SG, Latif J (2018) H8 control of 8 degrees of freedom vehicle active suspension system. J King Saud Univ Eng Sci 30(2):161–169

    Google Scholar 

  7. Erol B, Delibaşı A (2018) Proportional-integral-derivative type h8 controller for quarter car active suspension system. J Vib Control 24(10):1951–1966

    Article  MathSciNet  Google Scholar 

  8. Jing H, Wang R, Li C, Bao J (2019) Robust finite-frequency h8 control of full-car active suspension. J Sound Vib 441:221–239

    Article  Google Scholar 

  9. Zhang H, Zheng X, Yan H, Peng C, Wang Z, Chen Q (2017) Codesign of event-triggered and distributed h infintity filtering for active semi-vehicle suspension systems. IEEE/ASME Trans Mechatron 22(2):1047–1058

    Article  Google Scholar 

  10. Pan H, Jin X, Sun W, Gao H (2017) A bioinspired dynamics-based adaptive tracking control for nonlinear suspension systems. IEEE Trans Control Syst Technol 26(5):903–914

  11. Wu Z, Jing H, Gao X, Bian J, Li F, Allen R (2015) Vibration isolation by exploring bio-inspired structural nonlinearity. Bioinspir Biomim 10(5):056015

    Article  Google Scholar 

  12. Ebrahimi F, Hashemabadi D, Habibi M, Safarpour H (2020) Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell. Microsyst Technol 26(2):461–473

    Article  Google Scholar 

  13. SafarPour H, Mohammadi K, Ghadiri M, Rajabpour A (2017) Influence of various temperature distributions on critical speed and vibrational characteristics of rotating cylindrical microshells with modified lengthscale parametery. Eur Phys J Plus 132(6):281

    Article  Google Scholar 

  14. Chen S-A, Wang J-C, Yao M, Kim Y-B (2017) Improved optimal sliding mode control for a non-linear vehicle active suspension system. J Sound Vib 395:1–25

    Article  Google Scholar 

  15. Wang H, Mustafa GI, Tian Y (2018) Model-free fractional-order sliding mode control for an active vehicle suspension system. Adv Eng Softw 115:452–461

    Article  Google Scholar 

  16. Liu Y, Zeng Q, Liu L, Tong S (2018) An Adaptive Neural Network Controller for Active Suspension Systems With Hydraulic Actuator. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2018.2875187

    Article  Google Scholar 

  17. Liu S, Zhou H, Luo X, Xiao J (2016) Adaptive sliding fault tolerant control for nonlinear uncertain active suspension systems. J Frankl Inst 353(1):180–199

    Article  MathSciNet  Google Scholar 

  18. Rath JJ, Defoort M, Karimi HR, Veluvolu KC (2017) Output feedback active suspension control with higher order terminal sliding mode. IEEE Trans Ind Electron 64(2):1392–1403

    Article  Google Scholar 

  19. Ozer HO, Hacioglu Y, Yagiz N (2018) High order sliding mode control with estimation for vehicle active suspensions. Trans Inst Meas Control 40(5):1457–1470

    Article  Google Scholar 

  20. Lin B, Su X, Li X (2019) Fuzzy sliding mode control for active suspension system with proportional differential sliding mode observer. Asian J Control 21(1):264–276

    Article  MathSciNet  Google Scholar 

  21. Pang H, Liu F, Xu Z (2018) Variable universe fuzzy control for vehicle semi-active suspension system with mr damper combining fuzzy neural network and particle swarm optimization. Neurocomputing 306:130–140

    Article  Google Scholar 

  22. Huang Y, Na J, Wu X, Gao G (2018) Approximation-free control for vehicle active suspensions with hydraulic actuator. IEEE Trans Ind Electron 65(9):7258–7267

    Article  Google Scholar 

  23. Deshpande VS, Mohan B, Shendge P, Phadke S (2014) Disturbance observer based sliding mode control of active suspension systems. J Sound Vib 333(11):2281–2296

    Article  Google Scholar 

  24. Ning D, Sun S, Zhang F, Du H, Li W, Zhang B (2017) Disturbance observer based takagi-sugeno fuzzy control for an active seat suspension. Mech Syst Signal Process 93:515–530

    Article  Google Scholar 

  25. Lee K-T, Dai M-J, Chuang C-C (2018) Temperature-compensated model for lithium-ion polymer batteries with extended kalman filter state-of-charge estimation for an implantable charger. IEEE Trans Ind Electron 65(1):589–596

    Article  Google Scholar 

  26. Fan R, Liu Y, Huang R, Diao R, Wang S (2018) Precise fault location on transmission lines using ensemble kalman filter. IEEE Trans Power Deliv 33(6):3252–3255

    Article  Google Scholar 

  27. Pan H, Sun W, Gao H, Yu J (2015) Finite-time stabilization for vehicle active suspension systems with hard constraints. IEEE Trans Intell Transp Syst 16(5):2663–2672

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dushmanta Kumar Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meetei, L.V., Das, D.K. Enhanced nonlinear disturbance observer based sliding mode control design for a fully active suspension system. Int. J. Dynam. Control 9, 971–984 (2021). https://doi.org/10.1007/s40435-020-00682-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-020-00682-3

Keywords

Navigation