Skip to main content
Log in

Dynamic response and stability of a spinning turbine blade subjected to pitching and yawing

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

It is common that a spinning turbine blade may be subjected to pitching or yawing motion about other axes, as in aircrafts and water-borne vehicles. Such phenomenon can also occur in ground installed rotating machines subjected to various types of floor disturbances. This paper presents an investigation into the response and stability of a spinning turbine blade subjected to pitching and yawing motions. The partial differential equation that governs the motion of the system is developed using Hamilton’s principle. Time domain conversion using Galerkin method is carried out. The simultaneous differential equations are in the form of forced Mathieu equations. These equations are solved analytically by the method of multiple scales, assuming small pitching to spinning ratio. System response and the expressions for stability boundaries are obtained. The time domain equations are also solved numerically and compared with the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Carnegie W (1959) Vibrations of rotating cantilever blading: theoretical approaches to the frequency problem based on energy methods. J Mech Eng Sci 1(3):235–240

    Article  Google Scholar 

  2. Carnegie W (1959) Vibrations of pre-twisted cantilever blading. Proc Inst Mech Eng 173(12):343–374

    Article  Google Scholar 

  3. Carnegie W (1967) Solution of the equations of motion for the flexural vibration of cantilever blades under the rotation by the extended Holzer method. Bull Mech Eng Educ 6:225–230

    Google Scholar 

  4. Rao JS, Carnegie W (1970) Solution of the equations of motion of coupled-bending bending torsion vibrations of turbine blades by the method of Ritz–Galerkin. Int J Mech Sci 12:875–882

    Article  Google Scholar 

  5. Rao JS, Banerjee S (1977) Coupled bending-torsional vibrations of rotating cantilever blades-method of polynomial frequency equation. Mech Mach Theory 12:271–280

    Article  Google Scholar 

  6. Swaminathan M, Rao JS (1977) Vibrations of rotating, pretwisted and tapered blades. Mech Mach Theory 12:331–337

    Article  Google Scholar 

  7. Yoo HH, Park JH, Park J (2001) Vibration analysis of rotating pre-twisted blades. Comput Struct 79:1811–1819

    Article  Google Scholar 

  8. Yoo HH, Kwak JY, Chung J (2001) Vibration analysis of rotating pre-twisted blades with a concentrated mass. J Sound Vib 240(5):891–908

    Article  Google Scholar 

  9. Gunda JB, Singh AP, Chhabra PS, Ganguli R (2007) Free vibration analysis of rotating tapered blades using Fourier-p superelement. Struct Eng Mech 27(2):1–15

    Article  Google Scholar 

  10. Park JH et al (2010) Linear vibration analysis of rotating wind-turbine blade. Curr Appl Phys 10:S332–S334

    Article  Google Scholar 

  11. Wang F, Luo ACJ (2012) Analytical vibrations of a rotating blade with geometric nonlinearity. In: 4th IEEE international conference on nonlinear science and complexity, Budapest, Hungary

  12. Karadag V (1984) Dynamic analysis of practical blades with shear center effect. J Sound Vib 92(4):471–490

    Article  Google Scholar 

  13. Subrahmanyam KB, Kaza KRV (1985) Vibration analysis of rotating turbomachinery blades by an improved finite difference method. Int J Numer Methods Eng 21:1871–1886

    Article  Google Scholar 

  14. Singh VP, Samir S, Bedi RS (2005) Determination of natural frequencies of asymmetric cross-section blade—variational method. J Inst Eng (India) 85:163–168

    Google Scholar 

  15. Mohan RS, Sarkar A, Sekhar AS (2014) Vibration analysis of a steam turbine blade. In: inter.noise, Melbourne

  16. Vyas NS, Rao JS (1992) Equations of motions of a blade rotating with variable angular velocity. J Sound Vib 156(2):327–336

    Article  Google Scholar 

  17. Chen YP, Yao MH, Zhang W (2011) Nonlinear vibrations of the blade with varying rotating speed. In: Mechanic automation and control engineering (MACE)

  18. Young TH, Liou GT (1993) Dynamic response of a rotating blade with time-dependent rotating speed. J Sound Vib 164(1):157–171

    Article  Google Scholar 

  19. Sun J, Kari L (2009) Development of a dynamic rotating turbine blade model. In: ICSV 16, Krakow

  20. Ravn-Jensen K (1982) A shell analysis of turbine blade vibrations. Int J Mech Sci 24(10):581–587

    Article  Google Scholar 

  21. Rao JS, Gupta K (1987) Free vibrations of rotating small aspect ratio pretwisted blades. Mech Mach Theory 22(2):159–167

    Article  Google Scholar 

  22. Bhat MM, Ramamurti V, Sujhata C (1996) Studies on the determination of natural frequencies of industrial turbine blades. J Sound Vib 196(5):681–703

    Article  Google Scholar 

  23. Hu XX, Sakiyama T, Matsuda H, Morita C (2004) Fundamental vibration of rotating cantilever blades with pre-twist. J Sound Vib 271:47–66

    Article  Google Scholar 

  24. Kee YJ, Shin SJ (2015) Structural dynamic modeling for rotating blades using three dimensional finite elements. J Mech Sci Technol 29(4):1607–1618

    Article  Google Scholar 

  25. Yangui M, Bouaziz S, Taktak M, Haddar M (2016) Nonlinear analysis of twisted wind turbine blade. J Mech 34(3):269–278

    Article  Google Scholar 

  26. Sisto F, Chang A, Sutcu M (1983) The influence of Coriolis forces on gyroscopic motion of spinning blades. J Eng Power 105:342–347

    Article  Google Scholar 

  27. Young TH, Liou GT (1984) Dynamic response of spinning blades subjected to gyroscopic motion. J Vib Acoust Trans ASME 116:1–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Chandra Luintel.

Appendices

Appendix 1

1.1 Integration of nonzero terms for the kinetic energy expression

First term

$$ \begin{aligned} T_{1} & = \frac{1}{2}\int \rho \left[ \omega^{2} + \frac{1}{2}\left( {\omega_{N}^{2} + \omega_{M}^{2} } \right) + \frac{1}{2}\left( {\omega_{N}^{2} - \omega_{M}^{2} } \right)cos2\omega t\right.\\ &\left.\quad \quad+ \frac{1}{2}\omega_{N} \omega_{M} sin2\omega t \right]\left( {y_{1} + y} \right)^{2} dAdz \\ &= \frac{1}{2} \rho I_{xx} \left[ \omega^{2} + \frac{1}{2}\left( {\omega_{N}^{2} + \omega_{M}^{2} } \right) + \frac{1}{2}\left( {\omega_{N}^{2} - \omega_{M}^{2} } \right)cos2\omega t\right.\\ &\left.\qquad+ \frac{1}{2}\omega_{N} \omega_{M} sin2\omega t \right]l \\ & \qquad +\,\frac{1}{2} m\left[ \omega^{2} + \frac{1}{2}\left( {\omega_{N}^{2} + \omega_{M}^{2} } \right) + \frac{1}{2}\left( {\omega_{N}^{2} - \omega_{M}^{2} } \right)cos2\omega t\right.\\ &\left.\qquad+ \frac{1}{2}\omega_{N} \omega_{M} sin2\omega t \right]\mathop \int \limits_{0}^{l} y^{2} dz \\ \end{aligned} $$

Second term

$$ \begin{aligned} T_{2} & = \frac{1}{2}\int \rho \left[ \omega^{2} + \frac{1}{2}\left( {\omega_{N}^{2} + \omega_{M}^{2} } \right) - \frac{1}{2}\left( {\omega_{N}^{2} - \omega_{M}^{2} } \right)cos2\omega t\right.\\ &\left.\qquad -\,\frac{1}{2}\omega_{N} \omega_{M} sin2\omega t \right] \quad \left( {R + z - y_{1} y^{{\prime }} + u} \right)^{2} dAdz \\ \end{aligned} $$

Expanding and substituting, the expression for u [20]

$$ u = - \frac{1}{2}\mathop \int \limits_{0}^{z} y^{{{\prime }2}} dz $$

we get

Neglecting the higher order term and applying Carnegie transformation [1] for third term, we get

$$ \begin{aligned} T_{2} & = \frac{1}{2}m\left[ \omega^{2} + \frac{1}{2}\left( {\omega_{N}^{2} + \omega_{M}^{2} } \right) - \frac{1}{2}\left( {\omega_{N}^{2} - \omega_{M}^{2} } \right)cos2\omega t\right.\\ &\left.\qquad- \frac{1}{2}\omega_{N} \omega_{M} sin2\omega t \right]\left( {R^{2} l + Rl^{2} + \frac{{l^{3} }}{3}} \right) \\ & \qquad +\,\frac{1}{2}\rho I_{xx} \left[ \omega^{2} + \frac{1}{2}\left( {\omega_{N}^{2} + \omega_{M}^{2} } \right) - \frac{1}{2}\left( {\omega_{N}^{2} - \omega_{M}^{2} } \right)cos2\omega t\right.\\ &\left.\qquad- \frac{1}{2}\omega_{N} \omega_{M} sin2\omega t \right]\mathop \int \limits_{0}^{l} y^{{{\prime }2}} dz \\ & \quad -\,\frac{1}{2}m\left[ \omega^{2} + \frac{1}{2}\left( {\omega_{N}^{2} + \omega_{M}^{2} } \right) - \frac{1}{2}\left( {\omega_{N}^{2} - \omega_{M}^{2} } \right)cos2\omega t\right.\\ &\qquad\left. - \frac{1}{2}\omega_{N} \omega_{M} sin2\omega t \right] \mathop \int \limits_{0}^{l} y^{{{\prime }2}} \left\{ {R\left( {l - z} \right) + \frac{1}{2}\left( {l^{2} - z^{2} } \right)} \right\}dz \\ \end{aligned} $$

Third term

Fourth term

$$ T_{4} = \frac{1}{2}\int \rho \dot{y}^{2} dAdz = \frac{1}{2}m\mathop \int \limits_{0}^{l} \dot{y}^{2} dz $$

Fifth term

$$ \begin{aligned} T_{5} & = \frac{1}{2}\int \rho x_{1}^{2} \left( {\omega_{N}^{2} + \omega_{M}^{2} } \right)dAdz = \frac{1}{2}\rho I_{yy} \left( {\omega_{N}^{2} + \omega_{M}^{2} } \right)\mathop \int \limits_{0}^{l} dz \\ & = \frac{1}{2}\rho I_{yy} \left( {\omega_{N}^{2} + \omega_{M}^{2} } \right)l \\ \end{aligned} $$

Sixth term

Seventh term

$$ T_{7} = \frac{1}{2}\rho \int y_{1}^{2} \dot{y}^{{{\prime }2}} dAdz = \frac{1}{2}\rho I_{xx} \mathop \int \limits_{0}^{l} \dot{y}^{{{\prime }2}} dz $$

Eighth term

Ninth term

$$ T_{9} = - \rho \omega \int y_{1} \dot{y}^{{\prime }} \left( {y_{1} + y} \right)dAdz = - \rho I_{xx} \omega \mathop \int \limits_{0}^{l} \dot{y}^{{\prime }} dz $$

Tenth term

1.2 Variational operation of nonzero terms of Eq. (17)

First term

Second term

$$ \begin{aligned} \delta \mathop \int \limits_{{t_{1} }}^{{t_{2} }} L_{2} dt & = \delta \mathop \int \limits_{{t_{1} }}^{{t_{2} }} \left[ { - \frac{1}{2}m\mathop \int \limits_{0}^{l} \dot{y}^{2} dz} \right]dt \\ & = - m\mathop \int \limits_{0}^{l} \left[ {\mathop \int \limits_{{t_{1} }}^{{t_{2} }} \dot{y} \delta \left( {\dot{y}} \right)dt} \right]dz \\ & = - m\mathop \int \limits_{0}^{l} \left[ {\dot{y} \delta \left( y \right)\left| {\begin{array}{*{20}c} {t_{2} } \\ {t_{1} } \\ \end{array} } \right. - \mathop \int \limits_{{t_{1} }}^{{t_{2} }} \ddot{y} \delta \left( y \right)dt} \right]dz \\ & = m\mathop \int \limits_{{t_{1} }}^{{t_{2} }} \mathop \int \limits_{0}^{l} \ddot{y} \delta \left( y \right)dzdt \\ \end{aligned} $$

Third term

$$ \begin{aligned} \delta \mathop \int \limits_{{t_{1} }}^{{t_{2} }} L_{3} dt & = \delta \mathop \int \limits_{{t_{1} }}^{{t_{2} }} \left[ {m\omega \mathop \int \limits_{0}^{l} \left( {R + z} \right)\dot{y}dz} \right]dt \\ & = m\omega \mathop \int \limits_{0}^{l} \left( {R + z} \right)\left\{ {\delta \left( y \right)\left| {\begin{array}{*{20}c} {t_{2} } \\ {t_{1} } \\ \end{array} } \right.} \right\}dz = 0 \\ \end{aligned} $$

Fourth term

Fifth term

Sixth term

Seventh term

Eighth term

Ninth term

$$ \begin{aligned} & \delta \mathop \int \limits_{{t_{1} }}^{{t_{2} }} L_{9} dt = \delta \mathop \int \limits_{{t_{1} }}^{{t_{2} }} \left[ - \frac{1}{2} m\left[ \omega^{2} + \frac{1}{2}\left( {\omega_{N}^{2} + \omega_{M}^{2} } \right) + \frac{1}{2}\left( {\omega_{N}^{2} - \omega_{M}^{2} } \right)cos2\omega t\right.\right.\\ &\qquad\left.\left.+ \frac{1}{2}\omega_{N} \omega_{M} sin2\omega t \right]\mathop \int \limits_{0}^{l} y^{2} dz \right]dt \\ & \quad = - m\mathop \int \limits_{{t_{1} }}^{{t_{2} }} \left[ \omega^{2} + \frac{1}{2}\left( {\omega_{N}^{2} + \omega_{M}^{2} } \right)\right.\\ &\left.\qquad+ \frac{1}{2}\left( {\omega_{N}^{2} - \omega_{M}^{2} } \right)cos2\omega t + \frac{1}{2}\omega_{N} \omega_{M} sin2\omega t \right]\mathop \int \limits_{0}^{l} y\delta \left( y \right)dzdt \\ \end{aligned} $$

Tenth term

$$ \begin{aligned} \delta \mathop \int \limits_{{t_{1} }}^{{t_{2} }} L_{10} dt & = \delta \mathop \int \limits_{{t_{1} }}^{{t_{2} }} \left[ - m\left[ \frac{1}{2}\left( \omega_{N}^{2}\right.\right.\right.\\ &\qquad\left.\left.\left.- \omega_{M}^{2} \right)sin2\omega t - \omega_{N} \omega_{M} cos2\omega t \right]\mathop \int \limits_{0}^{l} \left( {R + z} \right)ydz \right]dt \\ & = - \mathop \int \limits_{{t_{1}}}^{{t_{2} }} m\left[ \frac{1}{2}\left( {\omega_{N}^{2} - \omega_{M}^{2} } \right)sin2\omega t\right.\\ &\left.\qquad- \omega_{N} \omega_{M} cos2\omega t \right]\mathop \int \limits_{0}^{l} \left( {R + z} \right)\delta \left( y \right)dzdt \\ \end{aligned} $$

Appendix 2

2.1 Elements of mass matrix, stiffness matrices and force vector

$$ \begin{aligned} M_{11} & = \frac{1}{{15120\left( {2E - \rho \omega^{2} l^{2} } \right)^{2} l^{4} }} \\ & \quad \left(139776 l^{4} mE^{2} + 816 l^{8} \rho^{2} \omega^{4} m - 17280 E\rho^{2} I_{x} l^{4} \omega^{2} \right.\\ & \left.\qquad +\,2304\rho^{3} \omega^{4} l^{6} I_{x} - 103680 \rho I_{x} l^{2} E^{2} - 208321 l^{6} Em\rho \omega^{2} \right) \\ M_{12} & = \frac{1}{{15120\left( {2E - \rho \omega^{2} l^{2} } \right)^{2} l^{4} }} \\ & \quad \left(64724 l^{4} mE^{2} + 3218 l^{8} \rho^{2} \omega^{4} m - 59040 E\rho^{2} I_{x} l^{4} \omega^{2} \right.\\ & \left. \quad \quad +\,9144\rho^{3} \omega^{4} l^{6} I_{x} - 531360 \rho I_{x} l^{2} E^{2} - 89380 l^{6} Em\rho \omega^{2} \right) \\ M_{21} & = \frac{1}{{166320\left( {2E - \rho \omega^{2} l^{2} } \right)^{2} l^{4} }} \\ & \quad \left(7121644 l^{4} mE^{2} + 35398 l^{8} \rho^{2} \omega^{4} m - 982080 E\rho^{2} I_{x} l^{4} \omega^{2} \right.\\ & \left. \quad \quad +\,100584\rho^{3} \omega^{4} l^{6} I_{x} - 5179680 \rho I_{x} l^{2} E^{2} - 983180 l^{6} Em\rho \omega^{2} \right) \\ M_{22} & = \frac{1}{{166320\left( {2E - \rho \omega^{2} l^{2} } \right)^{2} l^{4} }} \\ & \quad \left(32988672 l^{4} mE^{2} + 139640 l^{8} \rho^{2} \omega^{4} m - 3527040 E\rho^{2} I_{x} l^{4} \omega^{2} \right.\\ & \left. \quad \quad +\,400224\rho^{3} \omega^{4} l^{6} I_{x} - 26568960 \rho I_{x} l^{2} E^{2} - 4193488 l^{6} Em\rho \omega^{2} \right) \\ K_{11a} & = \frac{1}{{15120\left( {2E - \rho \omega^{2} l^{2} } \right)^{2} l^{4} }} \\ & \quad \left(1741824 E^{3} I_{x} - 2304 \rho^{3} \omega^{6} l^{6} I_{x} + 89856 E\rho^{2} I_{x} \omega^{4} l^{4} \right.\\ & \left.\quad \quad -\,912384 \rho \omega^{2} l^{2} E^{2} I_{x} + 1440 \rho^{2} \omega^{6} l^{7} mR + 144 \rho^{2} \omega^{6} l^{8} m \right.\\ & \left.\quad \quad +\,217728 m\omega^{2} l^{3} RE^{2} + 24192 m\omega^{2} l^{4} E^{2} \right.\\ & \left.\quad \quad - 31104 Em\omega^{4} l^{5} R\rho - 864 Em\omega^{4} l^{6} \rho \right) \\ K_{12a} & = \frac{1}{{15120\left( {2E - \rho \omega^{2} l^{2} } \right)^{2} l^{4} }} \\ & \quad \left(8031744 E^{3} I_{x} - 9144 \rho^{3} \omega^{6} l^{6} I_{x} + 373536 E\rho^{2} I_{x} \omega^{4} l^{4} \right.\\ & \left.\quad \quad -\,4113504 \rho \omega^{2} l^{2} E^{2} I_{x} + 5640 \rho^{2} \omega^{6} l^{7} mR + 562 \rho^{2} \omega^{6} l^{8} m \right.\\ & \left.\quad \quad +\,1010688 m\omega^{2} l^{3} RE^{2} + 115584 m\omega^{2} l^{4} E^{2} \right.\\ & \left.\quad \quad - 133584 Em\omega^{4} l^{5} R\rho - 4196 Em\omega^{4} l^{6} \rho \right) \\ K_{21a} & = \frac{1}{{166320\left( {2E - \rho \omega^{2} l^{2} } \right)^{2} l^{4} }} \\ & \quad \left(88349184 E^{3} I_{x} - 100584 \rho^{3} \omega^{6} l^{6} I_{x} + 4108896 E\rho^{2} I_{x} \omega^{4} l^{4} \right.\\ & \left.\quad \quad -\,45248544 \rho \omega^{2} l^{2} E^{2} I_{x} + 62040 \rho^{2} \omega^{6} l^{7} mR + 6182 \rho^{2} \omega^{6} l^{8} m \right.\\ & \left.\quad \quad +\,11117568 m\omega^{2} l^{3} RE^{2} + 1271424 m\omega^{2} l^{4} E^{2} \right.\\ & \left.\quad \quad - 1469424 Em\omega^{4} l^{5} R\rho - 46156 Em\omega^{4} l^{6} \rho \right) \\ K_{22a} & = \frac{1}{{166320\left( {2E - \rho \omega^{2} l^{2} } \right)^{2} l^{4} }} \\ & \quad \left(408443904 E^{3} I_{x} - 400224 \rho^{3} \omega^{6} l^{6} I_{x} + 17155776 E\rho^{2} I_{x} \omega^{4} l^{4} \right.\\ & \left.\quad \quad -\,204910464 \rho \omega^{2} l^{2} E^{2} I_{x} + 243540 \rho^{2} \omega^{6} l^{7} mR + 24460 \rho^{2} \omega^{6} l^{8} m \right.\\ & \left.\quad \quad +\,51625728 m\omega^{2} l^{3} RE^{2} + 6080256 m\omega^{2} l^{4} E^{2} \right.\\ & \left.\quad \quad - 6286104 Em\omega^{4} l^{5} R\rho - 229928 Em\omega^{4} l^{6} \rho \right) \\ K_{11b} & = \frac{1}{{210\left( {2E - \rho \omega^{2} l^{2} } \right)^{2} l^{2} }} \\ & \quad \left[\omega^{2} \left( - 216 Em\omega^{2} l^{3} R\rho + 720 \rho I_{x} E^{2} + 120 E\rho^{2} I_{x} \omega^{2} l^{2} \right.\right.\\ & \left.\left.\quad \quad +\,10 \rho^{2} \omega^{4} l^{5} mR + 168 ml^{2} E^{2} + 1512 mlRE^{2} - 6 Em\omega^{2} l^{4} \rho \right.\right.\\ & \left.\left.\quad \quad +\,\rho^{2} \omega^{4} l^{6} m - 16\rho^{3} \omega^{4} l^{4} I_{x}\right)\right] \\ K_{12b} & = \frac{1}{{15120\left( {2E - \rho \omega^{2} l^{2} } \right)^{2} l^{2} }} \\ & \quad \left[\omega^{2} \left( - 66792 Em\omega^{2} l^{3} R\rho + 265680 \rho I_{x} E^{2} + 29520 E\rho^{2} I_{x} \omega^{2} l^{2} \right.\right.\\ & \left.\left.\quad \quad +\,2820 \rho^{2} \omega^{4} l^{5} mR + 57792 ml^{2} E^{2} + 505344 mlRE^{2} \right.\right.\\ & \left.\left.\quad \quad - 2098 Em\omega^{2} l^{4} \rho +\,281 \rho^{2} \omega^{4} l^{6} m - 4572\rho^{3} \omega^{4} l^{4} I_{x} \right)\right] \\ K_{21b} & = \frac{1}{{15120\left( {2E - \rho \omega^{2} l^{2} } \right)^{2} l^{2} }} \\ & \quad \left[\omega^{2} \left( - 66792 Em\omega^{2} l^{3} R\rho + 235440 \rho I_{x} E^{2} + 44640 E\rho^{2} I_{x} \omega^{2} l^{2}\right.\right. \\ & \left.\left.\quad \quad +\,2820 \rho^{2} \omega^{4} l^{5} mR + 57792 ml^{2} E^{2} + 505344 mlRE^{2} \right.\right.\\ & \left.\left.\quad \quad -\, 2098 Em\omega^{2} l^{4} \rho + 281 \rho^{2} \omega^{4} l^{6} m - 4572\rho^{3} \omega^{4} l^{4} I_{x} \right)\right] \\ K_{22b} & = \frac{1}{{83160\left( {2E - \rho \omega^{2} l^{2} } \right)^{2} l^{2} }} \\ & \quad \left[\omega^{2} \left( - 1571526 Em\omega^{2} l^{3} R\rho + 6642240 \rho I_{x} E^{2} + 881760 E\rho^{2} I_{x} \omega^{2} l^{2} \right.\right.\\ & \left.\left.\quad \quad +\,60885 \rho^{2} \omega^{4} l^{5} mR + 1520064 ml^{2} E^{2} + 12906432 mlRE^{2} \right.\right.\\ & \quad \left.\left.\quad - 57482 Em\omega^{2} l^{4} \rho + 6115 \rho^{2} \omega^{4} l^{6} m - 100056 \rho^{3} \omega^{4} l^{4} I_{x}\right)\right] \\ K_{11c} & = - \frac{1}{{630\left( {2E - \rho \omega^{2} l^{2} } \right)^{2} l^{2} }} \\ & \quad \left[\omega^{2} \left(6328 ml^{2} E^{2} - 886 Em\omega^{2} l^{4} \rho + 37 \rho^{2} \omega^{4} l^{6} m \right.\right.\\ & \left.\left.\quad \quad - 648 Em\omega^{2} l^{3} R\rho + 2160 \rho I_{x} E^{2} + 360 E\rho^{2} I_{x} \omega^{2} l^{2} \right.\right.\\ & \left.\left.\quad \quad + 30 \rho^{2} \omega^{4} l^{5} mR + 4536 mlRE^{2} - 48 \rho^{3} \omega^{4} l^{4} I_{x} \right)\right] \\ K_{12c} & = - \frac{1}{{15120\left( {2E - \rho \omega^{2} l^{2} } \right)^{2} l^{2} }} \\ & \quad \left[\omega^{2} \left(705216 ml^{2} E^{2} - 91478 Em\omega^{2} l^{4} \rho + 3499 \rho^{2} \omega^{4} l^{6} m \right.\right.\\ & \left.\left.\quad \quad -\,66792 Em\omega^{2} l^{3} R\rho + 265680 \rho I_{x} E^{2} + 29520 E\rho^{2} I_{x} \omega^{2} l^{2} \right.\right.\\ & \left.\left.\quad \quad +\,2820 \rho^{2} \omega^{4} l^{5} mR + 505344 mlRE^{2} - 4572 \rho^{3} \omega^{4} l^{4} I_{x}\right)\right] \\ K_{21c} & = - \frac{1}{{15120\left( {2E - \rho \omega^{2} l^{2} } \right)^{2} l^{2} }} \\ & \quad \left[\omega^{2} \left(705216 ml^{2} E^{2} - 91478 Em\omega^{2} l^{4} \rho + 3499 \rho^{2} \omega^{4} l^{6} m \right. \right.\\ & \left.\left.\quad \quad - 66792 Em\omega^{2} l^{3} R\rho + 235440 \rho I_{x} E^{2} + 44640 E\rho^{2} I_{x} \omega^{2} l^{2} \right. \right.\\ & \left.\left.\quad \quad + 2820 \rho^{2} \omega^{4} l^{5} mR + 505344 mlRE^{2} - 4572 \rho^{3} \omega^{4} l^{4} I_{x} \right)\right] \\ K_{22c} & = - \frac{1}{{83160\left( {2E - \rho \omega^{2} l^{2} } \right)^{2} l^{2} }} \\ & \quad \left[\omega^{2} \left(18014400 ml^{2} E^{2} - 2154226 Em\omega^{2} l^{4} \rho + 75935 \rho^{2} \omega^{4} l^{6} m \right.\right.\\ & \left.\left.\quad \quad -\,1751526 Em\omega^{2} l^{3} R\rho + 6642240 \rho I_{x} E^{2} + 881760 E\rho^{2} I_{x} \omega^{2} l^{2} \right.\right.\\ & \left.\left.\quad \quad +\,60885 \rho^{2} \omega^{4} l^{5} mR + 12906432 mlRE^{2} - 100056 \rho^{3} \omega^{4} l^{4} I_{x} \right)\right] \\ DF_{1} & = \frac{{\omega^{2} m}}{{30\left( {2E - \rho \omega^{2} l^{2} } \right)}}\left( {26 E l + 36 E R - 2 \omega^{2} l^{3} \rho - 3 \omega^{2} R l^{2} \rho } \right) \\ DF_{2} & = \frac{{\omega^{2} m}}{{840\left( {2E - \rho \omega^{2} l^{2} } \right)}}\\ &\quad \left( {3368 E l + 4648 E R - 221 \omega^{2} l^{3} \rho - 329 \omega^{2} R l^{2} \rho } \right). \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luintel, M.C., Vyas, N.S. Dynamic response and stability of a spinning turbine blade subjected to pitching and yawing. Int. J. Dynam. Control 7, 1252–1277 (2019). https://doi.org/10.1007/s40435-019-00555-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-019-00555-4

Keywords

Navigation