Skip to main content
Log in

Multi-switching compound synchronization of four different chaotic systems via active backstepping method

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This manuscript presents a theoretical and numerical analysis to achieve compound synchronization of four non-identical chaotic systems for different multi-switching states. Multi-switching compound synchronization is achieved for three drive systems and one response system via active backstepping technique. By using Lyapunov stability theory, asymptotically stable synchronization states are established. To elaborate the considered scheme an example of Pehlivan system, Liu system, Qi system and Lu system is discussed. The conclusions drawn from computational and analytical approaches are in excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shibasaki N, Uchida A, Yoshimori S, Davis P (2006) Characteristics of chaos synchronization in semiconductor lasers subject to polarization-rotated optical feedback. IEEE J Quantum Electron 42(3):342–350

    Article  Google Scholar 

  2. Lu H, Leeuwen CV (2006) Synchronization of chaotic neural networks via output or state coupling. Chaos Solitons Fractals 30(1):166–176

    Article  MathSciNet  MATH  Google Scholar 

  3. Blasius B, Stone L (2000) Chaos and phase synchronization in ecological systems. Int J Bifurc Chaos 10(10):2361–2380

    Article  MATH  Google Scholar 

  4. Li C, Liao X, Wong K (2004) Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication. Phys D 194(3–4):187–202

    Article  MathSciNet  MATH  Google Scholar 

  5. Moskalenko OI, Koronovskii AA, Hramov AE (2010) Generalized synchronization of chaos for secure communication: remarkable stability to noise. Phys Lett A 374(29):2925–2931

    Article  MATH  Google Scholar 

  6. Li Z, Xu D (2004) A secure communication scheme using projective chaos synchronization. Chaos Solitons Fractals 22(2):477–481

    Article  MATH  Google Scholar 

  7. Wu X, Li S (2012) Dynamics analysis and hybrid function projective synchronization of a new chaotic system. Nonlinear Dyn 69(4):1979–1994

    Article  MathSciNet  MATH  Google Scholar 

  8. Haeri M, Emadzadeh AA (2007) Synchronizing different chaotic systems using active sliding mode control. Chaos Solitons Fractals 31(1):119–129

    Article  MathSciNet  MATH  Google Scholar 

  9. Feng G, Cao J (2013) Master-slave synchronization of chaotic systems with modified impulsive controller. Adv Differ Equ 2013:24. https://doi.org/10.1186/1687-1847-2013-24

    Article  MathSciNet  MATH  Google Scholar 

  10. Al-sawalha MM, Noorani MSM (2010) Adaptive reduced-order anti-synchronization of chaotic systems with fully unknown parameters. Commun Nonlinear Sci Numer Simul 15(10):3022–3034

    Article  MathSciNet  MATH  Google Scholar 

  11. Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64(8):821–824

    Article  MathSciNet  MATH  Google Scholar 

  12. Runzi L, Yinglan W, Shucheng D (2011) Combination synchronization of three classic chaotic systems using active backstepping design. Chaos 21:043114. https://doi.org/10.1063/1.3655366

    Article  MATH  Google Scholar 

  13. Lin H, Cai J, Wang J (2013) Finite-Time combination-combination synchronization for hyperchaotic systems. J Chaos 2013, Article ID 304643. https://doi.org/10.1155/2013/304643

  14. Sun J, Wang Y, Wang Y, Cui G, Shen Y (2016) Compound-combination synchronization of five chaotic systems via nonlinear control. Optik 127(8):4136–4143

    Article  Google Scholar 

  15. Ojo KS, Njah AN, Olusula OI (2015) Compound-combination synchronization of chaos in identical and different orders chaotic system. Arch Control Sci 25(LXI):463–490

    Article  MathSciNet  Google Scholar 

  16. Wu A, Zhang J (2014) Compound synchronization of fourth-order memristor oscillator. Adv Differ Equ 2014:100. https://doi.org/10.1186/1687-1847-2014-100

    Article  MathSciNet  Google Scholar 

  17. Zhang B, Deng F (2014) Double-Compound Synchronization of six memristor-based Lorenz Systems. Nonlinear Dyn 77(4):1519–1530

    Article  Google Scholar 

  18. Sun J, Yin Q, Shen Y (2014) Compound synchronization for four chaotic systems of integer order and fractional order. Europhys Lett 106(4):40005

    Article  Google Scholar 

  19. Runzi L, Yinglan W (2012) Finite time stochastic combination synchronization of three different chaotic systems and its application in secure communication. Chaos 22:023109. https://doi.org/10.1063/1.3702864

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun J, Shen Y, Yin Q, Xu C (2013) Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos 23:013140. https://doi.org/10.1063/1.4794794

    Article  MathSciNet  MATH  Google Scholar 

  21. Ucar A, Lonngren KE, Bai EW (2008) Multi-switching synchronization of chaotic systems with active controllers. Chaos Solitons Fractals 38(1):254–262

    Article  Google Scholar 

  22. Wang X, Sun P (2011) Multi-switching synchronization of chaotic system with adaptive controllers and unknown parameters. NonLinear Dyn 63(4):599–609

    Article  MathSciNet  Google Scholar 

  23. Ajayi AA, Ojo SK, Vincent UE, Njah NA (2014) Multiswitching synchronization of a driven hyperchaotic circuit using active backstepping. J Nonlinear Dyn 2014, Article ID 918586. https://doi.org/10.1155/2014/918586

  24. Vincent UE, Saseyi AO, McClintock PVE (2015) Multi-switching combination synchronization of chaotic systems. Nonlinear Dyn 80(1–2):845–854

    Article  MathSciNet  MATH  Google Scholar 

  25. Zheng S (2016) Multi-switching combination synchronization of three different chaotic systems via active nonlinear control. Optik 127(21):10247–10258

    Article  Google Scholar 

  26. Ojo KS, Njah AN, Olusola OI, Omeike MO (2014) Generalized reduced-order hybrid combination synchronization of three Josephson junctions via backstepping technique. Nonlinear Dyn 77(3):583–595

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu Z, Fu X (2013) Combination synchronization of three different order nonlinear systems using active backstepping design. Nonlinear Dyn 73(3):1863–1872

    Article  MathSciNet  MATH  Google Scholar 

  28. Pehlivan I, Uyarolu Y (2010) A new chaotic attractor from general Lorenz system family and its electronic experimental implementation. Turk J Electr Eng Comput Sci 18(2):171–184

    Google Scholar 

  29. Liu C, Liu T, Liu L, Liu K (2004) A new chaotic attractor. Chaos Solitons Fractals 22(5):1031–1038

    Article  MathSciNet  MATH  Google Scholar 

  30. Qi G, Chen G, Van Wyk MA, Van Wyk BJ, Zhang Y (2008) A four wing chaotic attractor generated from a new 3-D quadratic autonomous system. Chaos Solitons Fractals 38(3):705–721

    Article  MathSciNet  MATH  Google Scholar 

  31. Lu J, Chen G (2002) A new chaotic attractor coined. Int J Bifurc Chaos 12(3):659–661

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysha Ibraheem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Budhraja, M. & Ibraheem, A. Multi-switching compound synchronization of four different chaotic systems via active backstepping method. Int. J. Dynam. Control 6, 1126–1135 (2018). https://doi.org/10.1007/s40435-017-0365-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-017-0365-z

Keywords

Navigation