Skip to main content
Log in

Modeling and co-simulating of a large flexible satellites with three reaction wheels in ADAMS and MATLAB

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, a simple, accurate, and quick approach for modeling and controlling a large flexible satellite is presented. A satellite including three reaction wheels and two large flexible panels is modeled with the use of ADAMS. To increase the accuracy of the model, flexible panels are built by PATRAN/NASTRAN regarding to its accuracy in meshing and then are imported to ADAMS. Designed model is compared with a nonlinear analytical model derived by Euler–Lagrange’s method using co-simulation in ADAMS and MATLAB. For the purpose of verification of the ADAMS model, a PID controller is designed. The co-simulation results indicate that the ADAMS model efficiently could be used instead of the analytical model to avoid solving the complex dynamic equations of the flexible satellite for controlling purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Bodineau G, Beugnon C, Boulade S, Chiappa C (2005) (\(\mu \)–MU)-ITERATION technique applied to the control of satellites with large flexible appendages, 6th International ESA conference on guidance, navigation and control, vol 66, p 44

  2. Shen Q (1993) On the dynamics of spacecraft with flexible, deployable and slewing appendages. Ph.D. thesis, Simon Fraser University, Burnaby, Canada

  3. Hu Q, Ma G (2005) Vibration suppression of flexible spacecraft during attitude maneuvers. J Guid Control Dyn 28(2):377–380

    Article  Google Scholar 

  4. Azadi E, Eghtesad M, Fazelzadeh SA, Azadi M (2012) Vibration suppression of smart nonlinear flexible appendages of a rotating satellite by using hybrid adaptive sliding mode/Lyapunov control. J Vib Control 19(7):975–991

  5. Li ZB, Wang ZL, Li J-F (2004) A hybrid control scheme of adaptive and variable structure for flexible spacecraft. Aerosp Sci Technol 8(5):423–430

    Article  MATH  Google Scholar 

  6. Agrawal BN (1998) Attitude control of flexible spacecraft using pulse-width pulse-frequency modulated thrusters. Space Technol 17(1):15–34

    Google Scholar 

  7. Wie B, Plescia CT (1984) Attitude stabilization of flexible spacecraft during station keeping maneuvers. J Guid Control Dyn 7(4):430–436

    Article  Google Scholar 

  8. Chae JS, Park T-W (2003) Dynamic modeling and control of flexible space structures. KSME Int J 17(12):1912–1921

    Article  Google Scholar 

  9. Topland MP, Gravdahl JT (2004) Nonlinear attitude control of the micro satellite ESEO. In: 55th International astronautical congress of the international astronautical federation, Vancouver, Canada

  10. Singh Sahjendra N (1987) Robust nonlinear attitude control of flexible spacecraft. IEEE Trans Aerosp Electron Syst AES–23:380–387

    Article  MathSciNet  Google Scholar 

  11. Rietz RW, Inman DJ (2000) Comparison of linear and nonlinear control of a slewing beam. J Vib Control 237:309–322

    Article  Google Scholar 

  12. Guan P, Liu XJ, Liu JZ Flexible satellite attitude control via sliding mode technique, Decision and Control, 2005 and 2005 European control conference

  13. M Shahravi, Azimi M (2014) Attitude and vibration control of flexible spacecraft using singular perturbation approach. Int Sch Res Not 2014(2014):e163870

    Google Scholar 

  14. Nagata T, Modi VJ, Matsuo H (2001) Dynamics and control of flexible multibody systems: Part I: general formulation with an order N forward dynamics, Acta Astronaut 49(11):581–594

    Article  Google Scholar 

  15. Kane TR, Levinson DA (1980) Formulation of equations of motion for complex spacecraft. J Guid Control Dyn 3(2):99–112

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuang J, Meehan PA, Leung AYT, Tan S (2004) Nonlinear dynamics of a satellite with deployable solar panel arrays. Int J Non-Linear Mech 39(7):1161–1179

    Article  MATH  Google Scholar 

  17. Malekzadeh M, Naghash A, Talebi HA (2012) Robust attitude and vibration control of a nonlinear flexible spacecraft: robust attitude and vibration control. Asian J Control 14(2):553–563

    Article  MathSciNet  MATH  Google Scholar 

  18. Zheng J, Banks SP, Alleyne H (2005) Optimal attitude control for three-axis stabilized flexible spacecraft. Acta Astronaut 56(5):519–528

    Article  Google Scholar 

  19. Gorinevsky D, Vukovich G (1998) Nonlinear input shaping control of flexible spacecraft reorientation maneuver. J Guid Control Dyn 21(2):264–270

    Article  Google Scholar 

  20. Malekzadeh M, Naghash A, Talebi HA (2011) A robust nonlinear control approach for tip position tracking of flexible spacecraft. IEEE Trans Aerosp Electron Syst 47(4):2423–2434

    Article  MATH  Google Scholar 

  21. Pan D, Gao F, Miao Y, Cao R (2015) Co-simulation research of a novel exoskeleton-human robot system on humanoid gaits with fuzzy-PID/PID algorithms. Adv Eng Softw 79:36–46

    Article  Google Scholar 

  22. Mengali., Salvetti, Specht (2007) Multibody analysis of solar array deployment using flexible bodies. Thesis

  23. Wallrapp O, Wiedemann S (2002) Simulation of deployment of a flexible solar array. Multibody Syst Dyn 7(1):101–125

    Article  MATH  Google Scholar 

  24. Kojima Y, Taniwaki S, Okami Y (2008) Dynamic simulation of stick-slip motion of a flexible solar array. Control Eng Pract 16(6):724–735

    Article  Google Scholar 

  25. Nagaraj BP, Nataraju BS, Ghosal A (1997) Dynamics of a two-link flexible system undergoing locking: mathematical modelling and comparison with experiments. J Sound Vib 207(4):567–589

    Article  Google Scholar 

  26. Geo E et al (2008) Simulation and analysis of flexible solar panels’ deployment and locking processes. J Shanghai Jiaotong Univ Sci 13(3):275–279

    Article  Google Scholar 

  27. Verheul CH, Cruijssen HJ, van de Bos W (2001) Analysis of a novel solar panel system with ADAMS. In: Proceedings of the 16th European ADAMS user conference

  28. Narayana BL, Nagaraj BP, Nataraju BS (2000) Deployment dynamics of solar array with body rates. Materials of international ADAMS user conference

  29. Meirovitch L (1986) Elements of vibration analysis, 2 sub edn. McGraw-Hill

  30. Aghalari A (2013) The perfect modeling of reaction wheel turbulences and implementing on a laboratory prototype. J Space Sci Technol 14:43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Tahmasebi.

Appendix

Appendix

$$\begin{aligned} M_1^{c_1 }= & {} \left[ {{\begin{array}{l@{\quad }l@{\quad }l} {-0.2329}&{} {-0.1291}&{} {-0.07557} \\ {-1755}&{} {-371.9}&{} {-162.4} \\ 0&{} 0&{} 0 \\ \end{array} }} \right] ,\\ M_2^{c_1 }= & {} \left[ {{\begin{array}{l@{\quad }l@{\quad }l} {-0.2329}&{} {-0.1291}&{} {-0.07557} \\ {1755}&{} {371.9}&{} {162.4} \\ 0&{} 0&{} 0 \\ \end{array} }} \right] . \\ M_{11}^{c_2 }= & {} M_{22}^{c_2 } =\left[ {{\begin{array}{l@{\quad }l@{\quad }l} {271.7}&{} {-14.29}&{} {-8.377} \\ {-14.29}&{} {289.5}&{} {-4.642} \\ {-8.377}&{} {-4.642}&{} {294.7} \\ \end{array} }} \right] ,\\ M_{12}^{c_2 }= & {} M_{21}^{c_2 } =\left[ {{\begin{array}{l@{\quad }l@{\quad }l} {-25.78}&{} {-14.29}&{} {-8.377} \\ {-14.29}&{} {-7.918}&{} {-4.642} \\ {-8.377}&{} {-4.642}&{} {-2.722} \\ \end{array} }} \right] ,\\ K_1= & {} K_2 = \left[ {{\begin{array}{l@{\quad }l@{\quad }l} {283.436}&{} 0&{} 0 \\ 0&{} {11131.65}&{} 0 \\ 0&{} 0&{} {87273.96} \\ \end{array} }} \right] . \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahmasebi, M., Esmailzadeh, S.M. Modeling and co-simulating of a large flexible satellites with three reaction wheels in ADAMS and MATLAB. Int. J. Dynam. Control 6, 79–88 (2018). https://doi.org/10.1007/s40435-016-0300-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0300-8

Keywords

Navigation