Skip to main content
Log in

An emergency braking controller based on extremum seeking with experimental implementation

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

An extremum seeking scheme is developed for maximizing the longitudinal tire forces of the road vehicles during emergency braking situations. If the road condition is known, then a conventional braking controller could generate required braking moment to track the slip set point which belongs to that road condition. However, estimating the road condition is not an easy task and it brings additional computation effort. Rather than that, a self optimization algorithm is presented in this paper without relying on road condition estimation. The developed controller searches optimum operation point for getting maximum friction force. Computer simulations show the effectiveness of the self optimization routine. To validate the real time applicability of the algorithm, an electromechanical braking test system is used for the experiments. Due to the limited measurements from the experimental system, force and moment observers are designed to calculate necessary control inputs for maximizing the friction potential, i.e. the braking force. Via the experimental study, it has been shown that the developed self optimizing controller is fast, accurate, and operable on a real braking system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(\beta (t)\) :

Time increasing function in self optimization algorithm

\(\gamma \) :

Positive constant in self optimization algorithm

\(\rho \) :

Positive constant in self optimization algorithm

\(\kappa \) :

Slip ratio

\(\lambda \) :

Variable in self optimization algorithm

\(\mu (\kappa )\) :

Friction function between wheels

\(\tau ,\,\tau _1,\,\tau _2\) :

Filter time constants of force and moment observers

\(\omega \) :

Tire rotational velocity (rad/s)

\(d_{1}\) :

Viscous friction coefficient of the upper wheel (Nm/rad/s)

\(d_{2}\) :

Viscous friction coefficient of the lower wheel (Nm/rad/s)

i :

Brake motor command

m :

Vehicle mass in simulation study (kg)

\(r_{1}\) :

Radius of the upper wheel (m)

\(r_{2}\) :

Radius of the lower wheel (m)

s :

Sliding surface variable

t :

Time variable (s)

u :

Longitudinal velocity of the vehicle in simulation study (m/s)

\(x_{1}\) :

Angular velocity of the upper wheel (rad/s)

\(x_{2}\) :

Angular velocity of the lower wheel (rad/s)

\({\hat{x}}_1\) :

Estimated angular velocity of the upper wheel (rad/s)

\({\hat{x}}_2\) :

Estimated angular velocity of the lower wheel (rad/s)

D :

Positive constant

\(F_{n}\) :

Normal force from the upper wheel to the lower wheel (N)

G :

Proportional controller constant

\(F_{x}\) :

Friction force (N)

\(I_\omega \) :

Moment of inertia of the wheel in simulation study (\(\hbox {kg}\,\hbox {m}^{2}\))

\(J_{1}\) :

Moment of inertia of the upper wheel (\(\hbox {kg}\,\hbox {m}^{2}\))

\(J_{2}\) :

Moment of inertia of the lower wheel (\(\hbox {kg}\,\hbox {m}^{2}\))

M :

Positive constant in self optimization algorithm

\(M_{1}\) :

Braking moment (Nm)

\(M_{\mathrm{des}}\) :

Desired braking moment (Nm)

\(M_{10}\) :

Static friction moment of the upper wheel (Nm)

\(M_{20}\) :

Static friction moment of the lower wheel (Nm)

\(M_{\mathrm{g}}\) :

Gravitational and shock absorber moment acting on the balance lever (Nm)

Q :

Positive constant in force observer

R :

Tire radius of the vehicle model in simulation study (m)

T :

Positive constant in moment observer

\(T_{b}\) :

Braking moment in simulation study (Nm)

References

  1. Jing H, Liu Z, Chen H (2011) A switched control strategy for antilock braking system with on/off valves. IEEE Trans Veh Technol 60(4):1470–1484

    Article  Google Scholar 

  2. Mirzaeinejad H, Mirzaei M (2010) A novel method for non-linear control of wheel slip in anti-lock braking systems. Control Eng Pract 18(8):918–926

    Article  Google Scholar 

  3. Mitić DB, Perić SLj, Antić DS, Jovanović ZD, Milojković MT, Nikolić SS (2013) Digital sliding mode control of anti-lock braking system. Adv Electr Comput Eng 13(1):33–40

    Article  Google Scholar 

  4. Sharkawy AB (2010) Genetic fuzzy self-tuning PID controllers for antilock braking systems. Eng Appl Artif Intell 23(7):1041–1052

    Article  Google Scholar 

  5. Lin C-H, Li HY (2013) Intelligent hybrid control system design for antilock braking systems using self-organizing function-link fuzzy cerebellar model articulation controller. IEEE Trans Fuzzy Syst 21(6):1044–1055

    Article  Google Scholar 

  6. Harifi A, Aghagolzadeh A, Alizadeh G, Sadeghi M (2008) Designing a sliding mode controller for slip control of antilock brake systems. Transp Res Part C Emerg Technol 16(6):731–741

    Article  Google Scholar 

  7. Kayacan E, Oniz Y, Kaynak O (2009) A grey system modeling approach for sliding-mode control of antilock braking system. IEEE Trans Ind Electron 56(8):3244–3252

    Article  Google Scholar 

  8. Bhandari R, Patil S, Singh RK (2012) Surface prediction and control algorithms for anti-lock brake system. Transp Res Part C Emerg Technol 21:181–195

    Article  Google Scholar 

  9. Cabrera JA, Ortiz A, Castillo JJ, Simon A (2005) A fuzzy logic control for antilock braking system integrated in the IMMa tire test bench. IEEE Trans Veh Technol 54(6):1937–1949

    Article  Google Scholar 

  10. Rattasiri W, Wickramarachchi N, Halgamuge SK (2007) An optimized anti-lock braking system in the presence of multiple road surface types. Int J Adapt Control Signal Process 21(6):477–498

    Article  MATH  Google Scholar 

  11. Patel N, Edwards C, Spurgeon S (2007) Optimal braking and estimation of tyre friction in automotive vehicles using sliding modes. Int J Syst Sci 38(11):901–912

    Article  MathSciNet  MATH  Google Scholar 

  12. Rajamani R (2006) Vehicle dynamics and control. Springer, Berlin

    MATH  Google Scholar 

  13. Dincmen E, Guvenc BA, Acarman T (2014) Extremum seeking control of ABS braking in road vehicles with lateral force improvement. IEEE Trans Control Syst Technol 22(1):230–237

    Article  Google Scholar 

  14. Tanelli M, Astolfi A, Savaresi S (2008) Robust nonlinear output feedback control for brake by wire control systems. Automatica 44(4):1078–1087

    Article  MathSciNet  MATH  Google Scholar 

  15. Drakunov S, Özgüner Ü, Dix P, Ashrafi B (1995) ABS control using optimum search via sliding modes. IEEE Trans Control Syst Technol 3(1):79–85

    Article  Google Scholar 

  16. Zhang C, Ordonez R (2007) Numerical optimization-based extremum seeking control with application to ABS design. IEEE Trans Automat Contr 52(3):454–467

    Article  MathSciNet  MATH  Google Scholar 

  17. Haskara I, Ozguner U, Winkelman J (2000) Extremum control for optimal operating point determination and set point optimization via sliding modes. J Dyn Syst Meas Control 122(4):719–724

    Article  Google Scholar 

  18. Dincmen E (2014) Adaptive extremum seeking scheme for ABS control. In: 13th international workshop on variable structure systems July 30–Aug 2 Nantes

  19. Capra D, Galvagno E, van Leeuwen B, Igliani A, Ondrak V (2012) An ABS control logic based on wheel force measurement. Veh Syst Dyn 50(12):1779–1796

    Article  Google Scholar 

  20. Krstic M, Wang HH (2000) Stability of extremum seeking feedback for general nonlinear dynamic systems. Automatica 36(4):595–601

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang C, Siranosian A, Krstic M (2007) Extremum seeking for moderately unstable systems and for autonomous vehicle target tracking without position measurements. Automatica 43(10):1832–1839

    Article  MathSciNet  MATH  Google Scholar 

  22. Korovin SK, Utkin VI (1974) Using sliding modes in static optimization and nonlinear programming. Automatica 10(5):525–532

    Article  MathSciNet  MATH  Google Scholar 

  23. Drakunov S (1993) Sliding mode control of the systems with uncertain direction of control vector. IEEE Decis Control Proc 3:2477–2478

    Article  Google Scholar 

  24. Haskara I, Ozguner U, Winkelman J (2000) Wheel slip control for antispin acceleration via dynamic spark advance. Control Eng Pract 8(10):1135–1148

    Article  Google Scholar 

  25. Dincmen E, Guvenc BA (2012) A control strategy for parallel hybrid electric vehicles based on extremum seeking. Veh Syst Dyn 50(2):199–227

    Article  Google Scholar 

  26. Popovic D, Jankovic M, Magner S, Teel AR (2006) Extremum seeking methods for optimization of variable cam timing engine operation. IEEE Trans Control Syst Technol 14(3):398–407

    Article  Google Scholar 

  27. Guay M, Zhang T (2003) Adaptive extremum seeking control of nonlinear dynamic systems with parametric uncertainties. Automatica 39(7):1283–1293

    Article  MathSciNet  MATH  Google Scholar 

  28. DeHaan D, Guay M (2005) Extremum seeking control of state constrained nonlinear systems. Automatica 41(9):1567–1574

    Article  MathSciNet  MATH  Google Scholar 

  29. Pacejka HB (2002) Tyre and vehicle dynamics. Butterworth–Heinemann, Oxford

    MATH  Google Scholar 

  30. Utkin V, Guldner J, Shi J (2009) Sliding mode control in electromechanical systems. CRC Press, Boca Raton

    Book  Google Scholar 

  31. Inteco Ltd (2013) The laboratory anti-lock braking system controlled from PC. User’s Manual

  32. Lúa CA, Toledo BC, Gennaro SD, Gardea MM (2015) Dynamic control applied to a laboratory antilock braking system. Math Probl Eng. doi:10.1155/2015/896859

    MathSciNet  Google Scholar 

  33. Boopathi AM, Abudhahir A (2016) Design of grey-verhulst sliding mode controller for antilock braking system. Int J Control Autom Syst 14(3):763–772

    Article  Google Scholar 

  34. Peric SL, Antic DS, Milovanovic MB, Mitic DB, Milojkovic MT, Nikolic SS (2016) Quasi-sliding mode control with orthogonal endocrine neural network-based estimator applied in anti-lock braking system. IEEE-ASME Trans Mechatron 21(2):754–764

    Article  Google Scholar 

  35. Patil A, Ginoya D, Shendge PD, Phadke SB (2016) Uncertainty-estimation-based approach to antilock braking systems. IEEE Trans Veh Technol 65(3):1171–1185

    Article  Google Scholar 

  36. Verma R, Ginoya D, Shendge PD, Phadke SB (2015) Slip regulation for anti-lock braking systems using multiple surface sliding controller combined with inertial delay control. Veh Syst Dyn 53(8):1150–1171

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkin Dinçmen.

Additional information

This work was supported by the Turkish National Research Council (TUBITAK) under Grant no: 112E267.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinçmen, E., Altınel, T. An emergency braking controller based on extremum seeking with experimental implementation. Int. J. Dynam. Control 6, 270–283 (2018). https://doi.org/10.1007/s40435-016-0286-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0286-2

Keywords

Navigation