Skip to main content

Advertisement

Log in

Stability analysis of humoral immunity HIV infection models with RTI and discrete delays

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

A class of HIV infection models are proposed and analyzed. The models incorporate three types of immune cells, CD4\(^{+}\) T cells, macrophages and B cells. We consider also two types of intracellular discrete delays to describe the latent period from the virus contacts an uninfected target cell and the production of new HIV particles. The infection rate is represented by bilinear incidence and saturation incidence in the first two models. In the third model, both the infection rate and neutralization rate of viruses are given by nonlinear general functions. Two bifurcation parameters, the basic reproduction number and the humoral immunity activation number are derived. We established a set of conditions on the general functions which are sufficient to determine the global dynamics of the models. We utilize Lyapunov method to investigate the global asymptotic stability of all steady states of the models. An example is presented and some numerical simulations are conducted in order to illustrate the dynamical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Nowak MA, May RM (2000) Virus dynamics: mathematical principles of immunology and virology. Oxford University, Oxford

    MATH  Google Scholar 

  2. Obaid MA (2016) Dynamical behaviors of a nonlinear virus infection model with latently infected cells and immune response. J Comput Anal Appl 21(1):182–193

    MathSciNet  MATH  Google Scholar 

  3. Perelson AS, Nelson PW (1999) Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev 41:3–44

    Article  MathSciNet  MATH  Google Scholar 

  4. Callaway DS, Perelson AS (2002) HIV-1 infection and low steady state viral loads. Bull Math Biol 64:29–64

    Article  MATH  Google Scholar 

  5. Hattaf K, Yousfi N, Tridane A (2012) Mathematical analysis of a virus dynamics model with general incidence rate and cure rate. Nonlinear Anal Real World Appl 13(4):1866–1872

    Article  MathSciNet  MATH  Google Scholar 

  6. Herz V, Bonhoeffer S, Anderson R, May RM, Nowak MA (1996) Viral dynamics in vivo: limitations on estimations on intracellular delay and virus delay. Proc Nat Acad Sci USA 93(14):7247–7251

    Article  Google Scholar 

  7. Wang J, Lang J, Li F (2016) Constructing Lyapunov functionals for a delayed viral infection model with multitarget cells, nonlinear incidence rate, state-dependent removal rate. J Nonlinear Sci Appl 9:524–536

    MathSciNet  MATH  Google Scholar 

  8. Dixit NM, Perelson AS (2004) Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay. J Theor Biol 226:95–109

    Article  MathSciNet  Google Scholar 

  9. Connell McCluskey C, Yang Y (2015) Global stability of a diffusive virus dynamics model with general incidence function and time delay. Nonlinear Anal Real World Appl 25:64–78

    Article  MathSciNet  MATH  Google Scholar 

  10. Roy PK, Chatterjee AN, Greenhalgh D, Khan QJA (2013) Long term dynamics in a mathematical model of HIV-1 infection with delay in different variants of the basic drug therapy model. Nonlinear Anal Real World Appl 14:1621–1633

    Article  MathSciNet  MATH  Google Scholar 

  11. Yuan Z, Zou X (2013) Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Math Biosci and Eng 10(2):483–498

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu S, Wang L (2010) Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Math Biosci Eng 7(3):675–685

    Article  MathSciNet  MATH  Google Scholar 

  13. Elaiw AM, Hassanien IA, Azoz SA (2012) Global stability of HIV infection models with intracellular delays. J Korean Math Soc 49(4):779–794

    Article  MathSciNet  MATH  Google Scholar 

  14. Elaiw AM, Azoz SA (2013) Global properties of a class of HIV infection models with Beddington–DeAngelis functional response. Math Methods Appl Sci 36:383–394

    Article  MathSciNet  MATH  Google Scholar 

  15. Elaiw AM (2010) Global properties of a class of HIV models. Nonlinear Anal Real World Appl 11:2253–2263

    Article  MathSciNet  MATH  Google Scholar 

  16. Elaiw AM, Almuallem NA (2015) Global properties of delayed-HIV dynamics models with differential drug efficacy in co-circulating target cells. Appl Math Comput 265:1067–1089

    MathSciNet  MATH  Google Scholar 

  17. Elaiw AM, Xia X (2009) HIV dynamics: Analysis and robust multirate MPC-based treatment schedules. J Math Anal Appl 356:285–301

    Article  MathSciNet  MATH  Google Scholar 

  18. Buonomo B, Vargas-De-Le C (2012) Global stability for an HIV-1 infection model in cluding an eclipse stage of infected cells. J Math Anal Appl 385:709–720

    Article  MathSciNet  MATH  Google Scholar 

  19. Li MY, Wang L (2014) Backward bifurcation in a mathematical model for HIV infection in vivo with anti-retroviral treatment. Nonlinear Anal Real World Appl 17:147–160

    Article  MathSciNet  MATH  Google Scholar 

  20. Elaiw AM, Abukwaik RM, Alzahrani EO (2014) Global properties of a cell mediated immunity in HIV infection model with two classes of target cells and distributed delays. Int J Biomath 7(5):1–25

    Article  MathSciNet  MATH  Google Scholar 

  21. Li B, Chen Y, Lu X, Liu S (2016) A delayed HIV-1 model with virus waning term. Math Biosci Eng 13:135–157

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang D, Zhang X, Guo Y, Wang H. (2015) Analysis of an HIV infection model with treatments and delayed immune response. Appl Math Modell 40(4):3081–3089

  23. Zhao Y, Dimitrov DT, Liu H, Kuang Y (2013) Mathematical insights in evaluating state dependent effectiveness of HIV prevention interventions. Bull Math Biol 75(4):649–675

    Article  MathSciNet  MATH  Google Scholar 

  24. Monica C, Pitchaimani M (2016) Analysis of stability and Hopf bifurcation for HIV-1 dynamics with PI and three intracellular delays. Nonlinear Anal Real World Appl 27:55–69

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang L, Li MY (2006) Mathematical analysis of the global dynamics of a model for HIV infection of CD4\(^{+}\) T cells. Math Biosci 200(1):44–57

    Article  MathSciNet  MATH  Google Scholar 

  26. Lv C, Huang L, Yuan Z (2014) Global stability for an HIV-1 infection model with Beddington–DeAngelis incidence rate and CTL immune response. Commun Nonlinear Sci Numer Simul 19:121–127

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu R (2011) Global stability of an HIV-1 infection model with saturation infection and in tracellular delay. J Math Anal Appl 375:75–81

    Article  MathSciNet  MATH  Google Scholar 

  28. Deans JA, Cohen S (1983) Immunology of malaria. Annu Rev Microbiol 37:25–49

    Article  Google Scholar 

  29. Obaid MA, Elaiw AM (2014) Stability of virus infection models with antibodies and chronically infected cells. Abstract Appl Anal 2014:1–12

    Article  MathSciNet  Google Scholar 

  30. Wang S, Zou D (2012) Global stability of in host viral models with humoral immunity and intracellular delays. Appl Math Modell 36:1313–1322

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang T, Hu Z, Liao F (2014) Stability and Hopf bifurcation for a virus infection model with delayed humoral immunity response. J Math Anal Appl 411:63–74

    Article  MathSciNet  MATH  Google Scholar 

  32. Elaiw AM, Alhejelan A (2014) Global dynamics of virus infection model with humoral immune response and distributed delays. J Comput Anal Appl 17:515–523

    MathSciNet  MATH  Google Scholar 

  33. Elaiw AM, AlShamrani NH (2015) Global stability of a delayed humoral immunity virus dynamics model with nonlinear incidence and infected cells removal rates. Int J Dyn Control. doi:10.1007/s40435-015-0200-3

    MATH  Google Scholar 

  34. Elaiw AM, AlShamrani NH (2015) Dynamics of viral infection models with antibodies and general nonlinear incidence and neutralize rates. Int J Dyn Control. doi:10.1007/s40435-015-0181-2

    MATH  Google Scholar 

  35. Elaiw AM, AlShameani NH (2015) Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal. Nonlinear Anal Real World Appl 26:161–190

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang T, Hu Z, Liao F, Ma W (2013) Global stability analysis for delayed virus infection model with general incidence rate and humoral immunity. Math Comput Simul 89:13–22

    Article  MathSciNet  Google Scholar 

  37. Larson R, Edwards BH (2010) Calculus of a single variable. Cengage Learning Inc, USA

    Google Scholar 

  38. Hale JK, Verduyn Lunel S (1993) Introduction to functional differential equations. Springer, New York

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Elaiw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehata, A.M., Elaiw, A.M., Elnahary, E.K. et al. Stability analysis of humoral immunity HIV infection models with RTI and discrete delays. Int. J. Dynam. Control 5, 811–831 (2017). https://doi.org/10.1007/s40435-016-0235-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0235-0

Keywords

Navigation