Skip to main content
Log in

Numerical and experimental investigation of a cooling technique of a turbocharger radial turbine

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Microgas turbines are still limited in performance due to the difficulty of applying cooling systems to the radial turbines (RT). This paper proposes and investigates a cooling solution, which is a new scheme of circulating cooling air inside the RT disc. This solution can be easily manufactured or applied to existing RTs. Therefore, this solution is tested on an existing RT, starting by analyzing the temperature distribution inside the turbine blades without the cooling solution, which reveals the zones of the highest temperature where the cooling air circulation must be applied. The cooling air is supplied from the compressor through the turbine shaft. This study was carried out using both numerical heat transfer simulation and experimental tools. An experimental microgas turbine test bench using a turbocharger was built to estimate the boundary conditions and validate CFD simulations. The latter, which are based on the conjugate heat transfer (CFD_CHT), were applied to provide the temperature distributions and the flow behavior. The results show that the proposed solution can significantly reduce the disc temperature (about 60 °K) near the inlet, which is detected as the hottest zone, in contrast to the temperature of the blade tip. The analyses of the turbine performance show that the proposed solution reduces slightly the isentropic efficiency (lower than 2%) for high TITs (1100 °K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Han JC (2004) Recent studies in turbine blade cooling. Int J Rotating Mach 10(6):443–457. https://doi.org/10.1080/10236210490503978

    Article  Google Scholar 

  2. Han JC, Dutta S, Ekkad S (2012) Gas turbine heat transfer and cooling technology. CRC Press, BocaRaton, pp 159–315

    Book  Google Scholar 

  3. Almasi A (2013) Bright future of micro-turbines: nuclear emergency cooling and miniature generator. Aust J Mech Eng 11(2):169–175. https://doi.org/10.7158/M11-828.2013.11.2

    Article  Google Scholar 

  4. Roelke RJ (1992) Radial turbine cooling. NASA Technical Memorandum 105658. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930004104.pdf

  5. Xie Y, Lu K, Liu L, Xie G (2014) Fluid-thermal-structural coupled analysis of a radial inflow micro gas turbine using computational fluid dynamics and computational solid mechanics. Math Probl Eng 2014:1–10. https://doi.org/10.1155/2014/640560

    Article  MathSciNet  Google Scholar 

  6. Westin F, Rosenqvist J, Ångström HE (2004) Heat losses from the turbine of a turbocharged si-engine-measurements and simulation. SAE Tech Paper. https://doi.org/10.4271/2004-01-0996

    Article  Google Scholar 

  7. Bohn D, Heuer T, Kusterer K (2005) Conjugate flow and heat transfer investigation of a turbo charger. J Eng Gas Turbines Power 127(3):663–669. https://doi.org/10.1115/1.1839919

    Article  Google Scholar 

  8. Heuer T, Engels B (2007) Numerical analysis of the heat transfer in radial turbine wheels of turbo chargers. In Turbo Expo: Power for Land, Sea, and Air 47926:959–968. https://doi.org/10.1115/GT2007-27835

    Article  Google Scholar 

  9. Verstraete T, Alsalihi Z, Van den Braembussche RA (2007) Numerical study of the heat transfer in micro gas turbines. J Turbomach 129(4):835–841. https://doi.org/10.1115/1.2720874

    Article  Google Scholar 

  10. Romagnoli A, Martinez-Botas R (2012) Heat transfer analysis in a turbocharger turbine: an experimental and computational evaluation. Appl Therm Eng 38:58–77. https://doi.org/10.1016/j.applthermaleng.2011.12.022

    Article  Google Scholar 

  11. Atkins NR, Ainsworth RW (2012) Turbine aerodynamic performance measurement under nonadiabatic conditions. J Turbomach 134(6):061001. https://doi.org/10.1115/1.4004857

    Article  Google Scholar 

  12. Aghaali H, Ångström HE (2012) Turbocharged si-engine simulation with cold and hot-measured turbocharger performance maps. In Turbo Expo: power for land, sea, and air. Am Soc Mech Eng 44717:671–679. https://doi.org/10.1115/GT2012-68758

    Article  Google Scholar 

  13. Sirakov B, Casey M (2013) Evaluation of heat transfer effects on turbocharger performance. J Turbomach 135(2):021011. https://doi.org/10.1115/1.4006608

    Article  Google Scholar 

  14. Alaviyoun S, Ziabasharhagh M, Mohammadi A (2022) A three-dimensional conjugate heat transfer model of a turbocharger turbine housing. Iran J Sci Technol Trans Mech Eng 46(1):71–84. https://doi.org/10.1007/s40997-020-00399-w

    Article  Google Scholar 

  15. Gao X, Savic B, Baar R (2019) A numerical procedure to model heat transfer in radial turbines for automotive engines. Appl Therm Eng 153:678–691

    Article  Google Scholar 

  16. Basir H, Alaviyoun S, Rosen MA (2022) Thermal investigation of a turbocharger using IR thermography. Clean Technol 4(2):329–344

    Article  Google Scholar 

  17. Arifin M, Wahono B, Junianto E, Pasek AD (2015) Process manufacture rotor radial turbo-expander for small scale organic Rankine cycles using selective laser melting machine. Energy Procedia 68:305–310. https://doi.org/10.1016/j.egypro.2015.03.260

    Article  Google Scholar 

  18. Zhang Y, Duda T, Scobie JA, Sangan CM, Copeland CD, Redwood A (2018) Design of an air-cooled radial turbine: part 1—computational modelling. Turbo expo: power for land, sea, and air. Am Soc Mech Eng. https://doi.org/10.1115/GT2018-76378

    Article  Google Scholar 

  19. Zhang Y, Duda T, Scobie JA, Sangan CM, Copeland CD, Redwood A (2018) Design of an air-cooled radial turbine: part 2—experimental measurements of heat transfer In turbo expo: power for land, sea, and air. Am Soc Mech Eng. https://doi.org/10.1115/GT2018-76384

    Article  Google Scholar 

  20. Chao MA, Kangbo LU, Wenjiao LI (2021) Conjugate heat transfer study of backdisc cooling of a radial turbine. Proc Instit Mech Eng, Part D: J Automob Eng 235(2–3):841–853. https://doi.org/10.1177/0954407020947549

    Article  Google Scholar 

  21. Ma C, Su Y, Zhu G, Zhang J (2021) Effect of jet flow on cooling performance and thermal stress of a radial turbine back disc. Proc Instit Mech EngPart D: J Automob Eng 235(14):3594–3605. https://doi.org/10.1177/09544070211009416

    Article  Google Scholar 

  22. Ma C, Lu K, Li W (2020) The influence of a radial turbine volute on back-disk impingement cooling performance. J Braz Soc Mech Sci Eng 42(8):1–12. https://doi.org/10.1007/s40430-020-02535-8

    Article  Google Scholar 

  23. Ma C, Zhang H, Zhu Z, Wang X, Zhang J (2023) Investigation of unsteady conjugate heat transfer for a radial turbine with impingement cooling. Proc Instit Mech Eng Part D: J Automob Eng. https://doi.org/10.1177/09544070231187507

    Article  Google Scholar 

  24. Norheim S, Amzin S (2021) Numerical investigation of a radially cooled turbine guide vane using air and steam as a cooling medium. Computation 9(6):63

    Article  Google Scholar 

  25. Unnikrishnan U, Yang V (2022) A review of cooling technologies for high temperature rotating components in gas turbine. Propuls Power Res 11:293–310

    Article  Google Scholar 

  26. Tom H and Bertold E (2007) Numerical analysis of the heat transfer in radial turbine wheels of turbo chargers. In: Proceedings of GT2007 ASME Turbo Expo 2007: power for land, sea and air, pp 14–17, Montreal, Canada

  27. Falsetti C, Sisti M, Beard P (2020) Infrared thermography and calibration techniques for gas turbine applications: a review. Infrared Phys Technol. https://doi.org/10.1016/j.infrared.2020.103574

    Article  Google Scholar 

  28. ISO (2008) 18434–1: condition monitoring and diagnostics of machines – thermography - part 1: General procedures, Condition monitoring and diagnostics of machines.

  29. Khalfallah S, Ghenaiet A, Benini E, Bedon G (2015) Surrogate-based shape optimization of stall margin and efficiency of a centrifugal compressor. J Propuls Power 31:1607–1620

    Article  Google Scholar 

  30. John B, Senthilkumar P, Sadasivan S (2018) Applied and theoretical aspects of conjugate heat transfer analysis: a review. Archiv Comput Methods Eng 26:475–489

    Article  MathSciNet  Google Scholar 

  31. ANSYS CFX-Solver Theory Guide. ANSYS CFX-Release 12.0. Canonsburg, PA: ANSYS, Inc, 2009.

  32. Khalfallah S, Ghenaiet A (2012) Analyses of radial compressor stability improvement by casing treatment. Proc Instit Mech Eng Part A J Power Energy 226(7):807–821. https://doi.org/10.1177/0957650912458756

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smail Khalfallah.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Technical Editor: Guilherme Ribeiro.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziad, Y., Khalfallah, S., Chenafi, A. et al. Numerical and experimental investigation of a cooling technique of a turbocharger radial turbine. J Braz. Soc. Mech. Sci. Eng. 46, 288 (2024). https://doi.org/10.1007/s40430-024-04873-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-024-04873-3

Keywords

Navigation