Skip to main content
Log in

Dynamics modeling and impact response of a rescue robot with two flexible manipulators

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Rescue robots have been widely used in rescue work with mobility, adaptability, and flexibility. However, during the implementation of rescue tasks, rescue robots are often affected by external impacts, which will result in a significant decrease in the accuracy of the robot’s end effector, thereby affecting the efficiency of rescue. Developing an accurate dynamic model is the prerequisite to increase the control efficiency. The present paper presents a novel dynamic modeling method based on the transfer matrix method and analyzes the impact response characterizations of a rescue robot with single and dual flexible manipulators. The rescue robot with a single flexible manipulator is analyzed at the beginning. Firstly, the dynamic model of individual components is established using the transfer matrix method. And the overall model is obtained by iterating the transfer matrices and transfer equations of each component. Secondly, the natural frequency and vibration modes of the system can be determined when the boundary conditions are given. Thirdly, the orthogonality of the augmented eigenvectors of the dynamic model is verified, and the impact response of the end effector was obtained. Finally, an experimental setup was constructed to verify the accuracy of using the multi-body system transfer matrix method for dynamic response analysis. Additionally, this novel approach of dynamic modeling and impact response analysis was applied to the rescue robot with two flexible manipulators, and its effectiveness was evaluated. Overall, the modeling method presented in this paper provides a theoretical basis for further improving the accuracy and reducing the vibration of the end effector of rescue robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hong S, Park G, Lee Y (2023) Robust design and task-priority control for rescue robot HURCULES. J Field Robot. https://doi.org/10.1002/rob.22176

    Article  Google Scholar 

  2. Zhang S, Wu Y, He X (2021) Cooperative output feedback control of a mobile dual flexible manipulator. J Franklin Inst 358:6941–6961

    Article  MathSciNet  Google Scholar 

  3. Densborn S, Sawodny O (2021) Flexible multibody system modelling of an aerial rescue ladder using Lagrange’s equations. Math Comput Model Dyn Syst 27:322–346

    Article  MathSciNet  Google Scholar 

  4. Rodrigues GS, Pazelli TFPAT (2021) Dynamic modeling and control optimization of free-floating dual-arm space robots in task space. In: 2021 Latin American robotics symposium (LARS), 2021 Brazilian symposium on robotics (SBR), and 2021 workshop on robotics in education (WRE), pp 168–173

  5. Yin Q, Hu A, Li Q, Wei X, Yang H, Wang B, Zhang G (2020) Compound lower limb vibration training rehabilitation robot. Concurr Comput Pract Exp 33:e6059

    Article  Google Scholar 

  6. Wang B, Guan H, Lu P, Zhang A (2014) Road surface condition identification approach based on road characteristic value. J Terrramech 56:103–117

    Article  Google Scholar 

  7. Yang C, Jiang Y, He W, Na J, Li Z, Xu B (2018) Adaptive parameter estimation and control design for robot manipulators with finite-time convergence. IEEE Trans Ind Electron 65:8112–8123

    Article  Google Scholar 

  8. Wang K, Li J, Shen H, You J, Yang T (2022) Inverse dynamics of A 3-DOF parallel mechanism based on analytical forward kinematics. Chin J Mech Eng 35:119

    Article  Google Scholar 

  9. Xu C, Wang M, Chi G, Liu Q (2022) An inertial neural network approach for loco-manipulation trajectory tracking of mobile robot with redundant manipulator. Neural Netw 155:215–223

    Article  Google Scholar 

  10. Sengalani R, Rasool Mohideen S (2019) Numerical analysis of robotic manipulator subject to mechanical flexibility by Lagrangian method. Proc Natl Acad Sci India Sect A Phys Sci 90:503–513

    Article  MathSciNet  Google Scholar 

  11. Liu Z, Song Y, Chen J (2023) Coupled rigid-flexible dynamics modeling and validations of floating offshore wind turbine. Ocean Eng 267:113200

    Article  Google Scholar 

  12. Hussain Z, Azlan NZ (2019) 3-D dynamic modeling and validation of human arm for torque determination during eating activity using Kane’s method. Iran J Sci Technol Trans Mech Eng 44:661–694

    Article  Google Scholar 

  13. Lu H, Rui X, Zhang X (2021) A computationally efficient modeling method for the vibration analyses of two-dimensional system structures using reduced transfer matrix method for multibody system. J Sound Vib 502:116096

    Article  Google Scholar 

  14. Chen D, Gu C, Marzocca P, Yang J, Pan G (2022) Dynamic modeling of rotating blades system based on transfer matrix method of multibody system. Appl Math Model 105:475–495

    Article  MathSciNet  Google Scholar 

  15. Chen Y, Sun Q, Guo Q, Gong Y (2022) Dynamic modeling and experimental validation of a water hydraulic soft manipulator based on an improved Newton–Euler iterative method. Micromachines (Basel) 13:130

    Article  Google Scholar 

  16. Gao C, Zhang Y, Kang X, Xu P, Li B (2023) Dynamic analysis of a three-fingered deployable metamorphic robotic grasper. Mech Mach Theory 180:105140

    Article  Google Scholar 

  17. Qi F, Chen B, Gao S, She S (2021) Dynamic model and control for a cable-driven continuum manipulator used for minimally invasive surgery. Int J Med Robot 17:e2234

    Article  Google Scholar 

  18. Lu H, Rui X, Zhang X (2023) Transfer matrix method for linear vibration analysis of flexible multibody systems. J Sound Vib 549:117565

    Article  Google Scholar 

  19. Bestle D, Abbas L, Rui X (2013) Recursive eigenvalue search algorithm for transfer matrix method of linear flexible multibody systems. Multibody Syst Dyn 32:429–444

    Article  Google Scholar 

  20. Rui X, Wang X, Zhou Q, Zhang J (2019) Transfer matrix method for multibody systems (Rui method) and its applications. Sci China Technol Sci 62:712–720

    Article  Google Scholar 

  21. Li B, Cui G, Tian W, Liao W (2022) Vibration suppression of an industrial robot with AGV in drilling applications by configuration optimization. Appl Math Model 112:614–631

    Article  MathSciNet  Google Scholar 

  22. Cui G, Li B, Tian W, Liao W, Zhao W (2022) Dynamic modeling and vibration prediction of an industrial robot in manufacturing. Appl Math Model 105:114–136

    Article  MathSciNet  Google Scholar 

  23. Šalinić S, Bošković G, Nikolić M (2014) Dynamic modelling of hydraulic excavator motion using Kane’s equations. Autom Constr 44:56–62

    Article  Google Scholar 

  24. Rong B, Rui X, Tao L, Wang G, Zhang J, Xiao Z (2022) Efficient dynamics modeling and analysis for probabilistic uncertain beam systems with geometric nonlinearity and thermal coupling effect. Nonlinear Dyn 111:39–66

    Article  Google Scholar 

  25. Saldarriaga C, Chakraborty N, Kao I (2022) Damping selection for cartesian impedance control with dynamic response modulation. IEEE Trans Robot 38:1915–1924

    Article  Google Scholar 

  26. Jalali A, Janabi-Sharifi F (2022) Dynamic modeling of tendon-driven co-manipulative continuum robots. IEEE Robot Autom Lett 7:1643–1650

    Article  Google Scholar 

  27. Tao Y, Rui X, Zhang J, Yang F (2023) Simulation of vibration characteristics of IMU with controllable magnetorheological isolation system. Multibody Syst Dyn. https://doi.org/10.1007/s11044-022-09871-8

    Article  MathSciNet  Google Scholar 

  28. Miao Y, Wang G, Rui X, Tu T (2019) Study on test dynamics method of non-full loading firing for multiple launch rocket system. Mech Syst Signal Process 122:463–479

    Article  Google Scholar 

  29. Wang X, Rui X, Wang J, Zhang J, Wu G, Gu J (2022) Vibration characteristics analysis of tank gun barrel with non-uniform cross-section. Acta Mech Sin 38:521368

    Article  MathSciNet  Google Scholar 

  30. Li L, Yang Y, Xu W, Lu B, Gu Z, Yang J, Tan D (2022) Advances in the multiphase vortex-induced vibration detection method and its vital technology for sustainable industrial production. Appl Sci 12:8538

    Article  Google Scholar 

  31. Rui X, Bestle D, Zhang J, Zhou Q (2016) A new version of transfer matrix method for multibody systems. Multibody Syst Dyn 38:137–156

    Article  MathSciNet  Google Scholar 

  32. Shi M, Rong B, Liang J, Zhao W, Pan H (2022) Dynamics analysis and vibration suppression of a spatial rigid-flexible link manipulator based on transfer matrix method of multibody system. Nonlinear Dyn 111:1139–1159

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Tianjin Technical Expert Project (Grant No.: 22YDTPJC00480), the Cooperative Scientific Research Program of Chunhui Projects of Ministry Education of China (Grant No.: HZKY20220603), and the National Natural Science Foundation of China (Grant No.: 52375026).

Author information

Authors and Affiliations

Authors

Contributions

WC contributed to methodology, formal analysis, supervision, and project administration. CD worked in software, writing—original draft, and resources. FL helped in funding acquisition and writing—review and editing. YM worked in supervision. XZ worked in visualization. BL worked in data curation.

Corresponding author

Correspondence to Fulong Liu.

Ethics declarations

Conflict of interest

We declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Technical Editor: Rogério Sales Gonçalves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1. Spatial rigid body with one end input and one end output transfer matrix

$$ U_{1} = \left[ {\begin{array}{*{20}c} 1 & {b_{2} } & { - b_{1} } & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ {mw^{2} (b_{2} - c_{c2} )} & {u_{42} } & {u_{43} } & 1 & 0 & {b_{2} } \\ { - mw^{2} (b_{1} - c_{c1} )} & {u_{52} } & {u_{53} } & 0 & 1 & { - b_{1} } \\ {mw^{2} } & {mw^{2} c_{c2} } & { - mw^{2} c_{c1} } & 0 & 0 & 1 \\ \end{array} } \right] $$
$$ \begin{gathered} u_{42} = - w^{2} [J_{I,x} - m(b_{2} c_{c2} + b_{3} c_{c3} )] \, , \, u_{43} = - w^{2} (J_{I,xy} + mb_{2} c_{c1} ) \hfill \\ u_{52} = - w^{2} (J_{I,xy} + mb_{1} c_{c2} ){ , }u_{53} = - w^{2} [J_{I,y} - m(b_{3} c_{c3} + b_{1} c_{c1} )] \hfill \\ \end{gathered} $$

1.2 A.2. Planar rigid body with one end input and one end output transfer matrix

$$ U = \left[ {\begin{array}{*{20}c} 1 & 0 & { - b_{2} } & 0 & 0 & 0 \\ 0 & 1 & {b_{1} } & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ { - mw^{2} (b_{2} - c_{{c_{2} }} )} & {mw^{2} (b_{1} - c_{{c_{1} }} )} & { - w^{2} [m(b_{2} c_{{c_{2} }} + b_{1} c_{{c_{1} }} )]} & 1 & { - b_{2} } & {b_{1} } \\ {mw^{2} } & 0 & { - mw^{2} c_{{c_{2} }} } & 0 & 1 & 0 \\ 0 & {mw^{2} } & {mw^{2} c_{{c_{1} }} } & 0 & 0 & 1 \\ \end{array} } \right] $$

1.3 A.3. Transverse vibration beam transfer matrix

$$ U = B\left( l \right)B^{ - 1} \left( 0 \right) = \left[ {\begin{array}{*{20}c} {S(\lambda l)} & {\frac{T(\lambda l)}{\lambda }} & {\frac{U(\lambda l)}{{EI\lambda^{2} }}} & {\frac{V(\lambda l)}{{EI\lambda^{3} }}} \\ {\lambda V(\lambda l)} & {S(\lambda l)} & {\frac{T(\lambda l)}{{EI\lambda }}} & {\frac{U(\lambda l)}{{EI\lambda^{2} }}} \\ {EI\lambda^{2} U(\lambda l)} & {EI\lambda V(\lambda l)} & {S(\lambda l)} & {\frac{T(\lambda l)}{\lambda }} \\ {EI\lambda^{3} T(\lambda l)} & {EI\lambda^{2} U(\lambda l)} & {\lambda V(\lambda l)} & {S(\lambda l)} \\ \end{array} } \right] $$
$$ \lambda = \sqrt[4]{{{{\mathop m\limits^{\_} \omega^{2} } \mathord{\left/ {\vphantom {{\mathop m\limits^{\_} \omega^{2} } {(EI)}}} \right. \kern-0pt} {(EI)}}}} $$
$$ S\left( x \right) = \frac{\cosh x + \cos x}{2},\;\;\;T\left( x \right) = \frac{\sinh x + \sin x}{2} $$
$$ U\left( x \right) = \frac{\cosh x - \cos x}{2},\;\;\;\;V\left( x \right) = \frac{\sinh x - \sin x}{2} $$

1.4 A.4. Planar flexible joint transfer matrix

$$ {\mathbf{U}}_{t}^{\prime } = \left[ {\begin{array}{*{20}c} {I_{3} } & {U_{1,2} } \\ {0_{3 \times 3} } & {I_{3} } \\ \end{array} } \right]_{6 \times 6} \;\;\;\;{\mathbf{U}}_{m}^{\prime } = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ {mw^{2} } & 0 & 1 & 0 \\ 0 & {mw^{2} } & 0 & 1 \\ \end{array} } \right]\;\;\;\;U = {\mathbf{U}}_{t}^{\prime } {\mathbf{U}}_{m}^{\prime } $$
$$ {\mathbf{U}}_{1,2} = \left[ {\begin{array}{*{20}c} 0 & { - 1/K_{{\text{x}}} } & 0 \\ 0 & 0 & { - 1/K_{{\text{y}}} } \\ { - 1/K_{{\text{z}}}^{\prime } } & 0 & 0 \\ \end{array} } \right] $$

where \({\mathbf{U}}^{\prime}_{t}\) is the transfer matrix of the plane elastic hinge. \({\mathbf{U}}^{\prime}_{m}\) is the plane concentration mass transfer matrix. \({\mathbf{U}}\) is the transfer matrix of the plane flexible joint.

1.5 A.5. Spatial longitudinal vibration spring transfer matrix

$$ {\mathbf{U}} = \left[ {\begin{array}{*{20}c} {{\mathbf{I}}_{3} } & {{\mathbf{\rm O}}_{3 \times 3} } \\ {\mathbf{K}} & {{\mathbf{I}}_{3} } \\ \end{array} } \right]_{6 \times 6} \;\;\;\;{\mathbf{K}} = \left[ {\begin{array}{*{20}c} { - 1/K_{{\text{x}}} } & 0 & 0 \\ 0 & { - 1/K_{{\text{y}}} } & 0 \\ 0 & 0 & { - 1/K_{{\text{z}}} } \\ \end{array} } \right] $$

1.6 A.6. Spatial flexible joints transfer matrix

$$ {\mathbf{U}}_{t} = \left[ {\begin{array}{*{20}c} {{\mathbf{I}}_{3} } & {{\mathbf{O}}_{3 \times 3} } & {{\mathbf{O}}_{3 \times 3} } & {{\mathbf{U}}_{14} } \\ {{\mathbf{O}}_{3 \times 3} } & {{\mathbf{I}}_{3} } & {{\mathbf{U}}_{23} } & {{\mathbf{O}}_{3 \times 3} } \\ {{\mathbf{O}}_{3 \times 3} } & {{\mathbf{O}}_{3 \times 3} } & {{\mathbf{I}}_{3} } & {{\mathbf{O}}_{3 \times 3} } \\ {{\mathbf{O}}_{3 \times 3} } & {{\mathbf{O}}_{3 \times 3} } & {{\mathbf{O}}_{3 \times 3} } & {{\mathbf{I}}_{3} } \\ \end{array} } \right]_{12 \times 12} \;\;\;\;{\mathbf{U}}_{m} = \left[ {\begin{array}{*{20}c} {{\mathbf{I}}_{3} } & {{\mathbf{O}}_{3 \times 3} } \\ {{\mathbf{U}}_{21} } & {{\mathbf{I}}_{3} } \\ \end{array} } \right]_{6 \times 6} \;\;\;\;\;{\mathbf{U}} = {\mathbf{U}}^{\prime}_{t} {\mathbf{U}}^{\prime}_{m} $$
$$ {\mathbf{U}}_{23} = \left[ {\begin{array}{*{20}c} {1/K_{x}{\prime} } & 0 & 0 \\ 0 & {1/K_{y}{\prime} } & 0 \\ 0 & 0 & {1/K_{z}{\prime} } \\ \end{array} } \right]\;\;\;{\mathbf{U}}_{21} = \left[ {\begin{array}{*{20}c} {m\omega^{2} } & 0 & 0 \\ 0 & {m\omega^{2} } & 0 \\ 0 & 0 & {m\omega^{2} } \\ \end{array} } \right]\;\;\;{\mathbf{U}}_{14} = \left[ {\begin{array}{*{20}c} { - 1/K_{{\text{x}}} } & 0 & 0 \\ 0 & { - 1/K_{{\text{y}}} } & 0 \\ 0 & 0 & { - 1/K_{{\text{z}}} } \\ \end{array} } \right] $$

where \({\mathbf{U}}^{\prime}_{t}\) is the transfer matrix of the spatial elastic hinge. \({\mathbf{U}}^{\prime}_{m}\) is the spatial concentration mass transfer matrix. \({\mathbf{U}}\) is the transfer matrix of the spatial flexible joint.

1.7 A.7. Spatial vibrating Euler–Bernoulli beam transfer matrix

\( {\text{u}} = \left[ {\begin{array}{*{20}l} {u_{{1,1}} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {u_{{1,10}} } & 0 & 0 \\ 0 & {u_{{2,2}} } & 0 & 0 & 0 & {u_{{2,6}} } & 0 & 0 & {u_{{2,9}} } & 0 & {u_{{2,11}} } & 0 \\ 0 & 0 & {u_{{3,3}} } & 0 & {u_{{3,5}} } & 0 & 0 & {u_{{3,8}} } & 0 & 0 & 0 & {u_{{3,12}} } \\ 0 & 0 & 0 & {u_{{4,4}} } & 0 & 0 & {u_{{4,7}} } & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {u_{{5,3}} } & 0 & {u_{{5,5}} } & 0 & 0 & {u_{{5,8}} } & 0 & 0 & 0 & {u_{{5,12}} } \\ 0 & {u_{{6,2}} } & 0 & 0 & 0 & {u_{{6,6}} } & 0 & 0 & {u_{{6,9}} } & 0 & {u_{{6,11}} } & 0 \\ 0 & 0 & 0 & {u_{{7,4}} } & 0 & 0 & {u_{{7,7}} } & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {u_{{8,3}} } & 0 & {u_{{8,5}} } & 0 & 0 & {u_{{8,8}} } & 0 & 0 & 0 & {u_{{8,12}} } \\ 0 & {u_{{9,2}} } & 0 & 0 & 0 & {u_{{9,6}} } & 0 & 0 & {u_{{9,9}} } & 0 & {u_{{9,11}} } & 0 \\ {u_{{10,1}} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {u_{{10,10}} } & 0 & 0 \\ 0 & {u_{{11,2}} } & 0 & 0 & 0 & {u_{{11,6}} } & 0 & 0 & {u_{{11,9}} } & 0 & {u_{{11,11}} } & 0 \\ 0 & 0 & {u_{{12,3}} } & 0 & {u_{{12,5}} } & 0 & 0 & {u_{{12,8}} } & 0 & 0 & 0 & {u_{{12,12}} } \\ \end{array} } \right] \)\(u_{1,1} = u_{10,10} = \cos \beta_{x} x_{i} \;\;\;\;\;u_{1,10} = \frac{{ - \sin \beta_{x} x_{i} }}{{\beta_{x} EA_{i} }}\;\;\;\;u_{10,1} = \beta_{x} EA_{i} \sin \beta_{x} x_{i}\)\(u_{4,4} = u_{7,7} = \cos \gamma_{{\theta_{x} }} x_{i} \;\;\;\;\;u_{4,7} = \frac{{ - \sin \gamma_{{\theta_{x} }} x_{i} }}{{\gamma_{{\theta_{x} }} \left( {GJ_{p} } \right)_{i} }}\;\;\;\;u_{7,4} = \gamma_{{\theta_{x} }} x_{i} \left( {GJ_{p} } \right)_{i} \sin \gamma_{{\theta_{x} }} x_{i}\)\(u_{2,2} = u_{6,6} = u_{9,9} = u_{11,11} = S(\lambda_{y} x_{i} )\;\;\;\;u_{3,3} = u_{5,5} = u_{8,8} = u_{12,12} = S(\lambda_{z} x_{i} )\) \(u_{2,6} = u_{9,11} = \frac{{T(\lambda_{y} x_{i} )}}{{\lambda_{y} }}\;\;\;\;u_{2,9} = u_{6,11} = \frac{{U(\lambda_{y} x_{i} )}}{{EI_{z,i} \lambda_{y}^{2} }}\;\;\;\;u_{2,11} = \frac{{V(\lambda_{y} x_{i} )}}{{EI_{z,i} \lambda_{y}^{3} }}\) \(u_{5,8} = \frac{{T(\lambda_{z} x_{i} )}}{{EI_{z,i} \lambda_{z} }}\;\;\;u_{3,5} = u_{8,12} = \frac{{ - T(\lambda_{z} x_{i} )}}{{\lambda_{z} }}\;\;\;u_{3,8} = u_{5,12} = \frac{{ - U(\lambda_{z} x_{i} )}}{{EI_{y,i} \lambda_{z}^{2} }}\) \(u_{3,12} = \frac{{V(\lambda_{z} x_{i} )}}{{EI_{y,i} \lambda_{z}^{3} }}\;\;\;u_{6,9} = \frac{{T(\lambda_{y} x_{i} )}}{{EI_{z,i} \lambda_{y} }}\;\;\;\;u_{5,3} = u_{12,8} = - \lambda_{z} V(\lambda_{z} x_{i} )\) \(u_{6,2} = u_{11,9} = - \lambda_{y} V(\lambda_{y} x_{i} )\;\;\;\;u_{8,3} = u_{12,5} = - EI_{y,i} \lambda_{z}^{2} U(\lambda_{z} x_{i} )\;\;\;\;u_{8,5} = EI_{y,i} \lambda_{z} V(\lambda_{z} x_{i} )\) \(u_{9,2} = u_{11,6} = EI_{z,i} \lambda_{y}^{2} U(\lambda_{y} x_{i} )\;\;\;u_{9,6} = EI_{z,i} \lambda_{y} V(\lambda_{y} x_{i} )\;\;\;u_{11,2} = EI_{z,i} \lambda_{y}^{3} T(\lambda_{y} x_{i} )\) \(u_{12,3} = EI_{y,i} \lambda_{z}^{3} T(\lambda_{z} x_{i} )\;\;\;\lambda_{y} =\)\(\gamma_{{\theta_{x} }} = \sqrt {{{\left( {\rho J_{p} } \right)_{i} \omega^{2} } \mathord{\left/ {\vphantom {{\left( {\rho J_{p} } \right)_{i} \omega^{2} } {\left( {GJ_{p} } \right)}}} \right. \kern-0pt} {\left( {GJ_{p} } \right)}}} \;\;\;\;0 \le x_{i} \le l_{i}\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Du, C., Liu, F. et al. Dynamics modeling and impact response of a rescue robot with two flexible manipulators. J Braz. Soc. Mech. Sci. Eng. 46, 217 (2024). https://doi.org/10.1007/s40430-024-04794-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-024-04794-1

Keywords

Navigation