Skip to main content
Log in

Exploring energy aspects and tool wear on dry turning of cupola slag-reinforced aluminium metal matrix composites

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This study investigates the dry turning of cupola slag reinforced aluminium metal matrix composites (AMCs) with the aim of exploring the energy aspects and tool wear. The study involves the fabrication of cast cupola slag reinforced Al–4.5–Cu matrix composites by the economic stir casting method with varying the weight percentage of cupola slag (3 wt.%, 5 wt.% and 7 wt.%) followed by dry turning using coated carbide tool. The experimentation involves process input parameters such as spindle speed, feed rate and weight percentage of slag and the experimentation has been designed using statistical full factorial methodology. The energy aspects have been evaluated by measuring cutting force and power consumed during machining and tool wear have been measured using optical microscopy. The results showed that the cutting force and power consumption increase with increasing speed and feed rate decreases with increasing slag concentration. Slag incorporation has a significant effect on machinability as it eases the turning process when compared with base alloy. Moreover, detailed analyses of the effect of process input on the responses have been studied along with rigorous comparison of machining quality. The findings can be useful in optimizing the cutting conditions for improved energy efficiency and tool life in the machining of similar materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ralph B, Yuen HC, Lee WB (1997) The processing of metal matrix composites—an overview. J Mater Process Technol 63:339–353. https://doi.org/10.1016/S0924-0136(96)02645-3

    Article  Google Scholar 

  2. Surappa MK (2003) Aluminium matrix composites: challenges and opportunities. Sadhana Acad Proc Eng Sci 28:319–334. https://doi.org/10.1007/BF02717141

    Article  CAS  Google Scholar 

  3. Adin MS (2023) Machining aerospace aluminium alloy with cryo-treated and untreated HSS cutting tools. Adv Mater Process Technol. https://doi.org/10.1080/2374068X.2023.2273035

    Article  Google Scholar 

  4. Sikder R, Chakravarty S, Haldar P et al (2022) Scope for cupola slag reuse in construction: a sustainable green solution. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-022-04257-x

    Article  Google Scholar 

  5. Chakravarty S, Haldar P, Nandi T, Sutradhar G (2021) Cupola slag reutilization for sustainable waste management: review and economic analysis. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03574-x

    Article  Google Scholar 

  6. Narasaraju G, Raju DL (2015) Characterization of Hybrid rice husk and fly ash-reinforced aluminium alloy (AlSi10Mg) composites. Mater Today Proc 2:3056–3064. https://doi.org/10.1016/j.matpr.2015.07.245

    Article  CAS  Google Scholar 

  7. Siva SBV, Ganguly RI, Srinivasarao G, Sahoo KL (2013) Machinability of aluminum metal matrix composite reinforced with in-situ ceramic composite developed from mines waste colliery shale. Mater Manuf Process 28:1082–1089. https://doi.org/10.1080/10426914.2013.811734

    Article  CAS  Google Scholar 

  8. Muthu P (2023) Optimization of dry sliding wear behaviour of industrial wastes reinforced aluminium based metal matrix composites. Materwiss Werksttech 54:327–334. https://doi.org/10.1002/mawe.202200172

    Article  CAS  Google Scholar 

  9. Chakravarty S, Sikder R, Haldar P et al (2023) Experimental investigation on feasibility of industrial waste to resource conversion for cupola slag. Results Eng 17:100962. https://doi.org/10.1016/j.rineng.2023.100962

    Article  CAS  Google Scholar 

  10. Dabade UA, Joshi SS (2009) Analysis of chip formation mechanism in machining of Al/SiCp metal matrix composites. J Mater Process Technol 209:4704–4710. https://doi.org/10.1016/j.jmatprotec.2008.10.057

    Article  CAS  Google Scholar 

  11. Nataraj M, Balasubramanian K, Palanisamy D (2018) Influence of process parameters on CNC turning of aluminium hybrid metal matrix composites. Mater Today Proc 5:14499–14506. https://doi.org/10.1016/j.matpr.2018.03.037

    Article  CAS  Google Scholar 

  12. Muthukrishnan N, Murugan M, Rao KP (2008) An investigation on the machinability of Al–SiC metal matrix composites using pcd inserts. Int J Adv Manuf Technol 38:447–454. https://doi.org/10.1007/s00170-007-1111-z

    Article  Google Scholar 

  13. Wang Y, Liao W, Yang K et al (2019) Simulation and experimental investigation on the cutting mechanism and surface generation in machining SiCp/Al MMCs. Int J Adv Manuf Technol 100:1393–1404. https://doi.org/10.1007/s00170-018-2769-0

    Article  Google Scholar 

  14. Suresh P, Marimuthu K, Ranganathan S, Rajmohan T (2014) Optimization of machining parameters in turning of Al–SiC–Gr hybrid metal matrix composites using grey-fuzzy algorithm. Trans Nonferrous Met Soc China 24:2805–2814. https://doi.org/10.1016/S1003-6326(14)63412-9

    Article  CAS  Google Scholar 

  15. Dinaharan I, David Raja Selvam J, Jose J, Palanivel R (2023) Influence of fly ash particles on machining characteristics of AA6061 aluminum matrix composites produced using semisolid slurry casting. Trans Indian Inst Met. https://doi.org/10.1007/s12666-022-02869-y

    Article  Google Scholar 

  16. Sahoo AK, Pradhan S (2013) Modeling and optimization of Al/SiCp MMC machining using Taguchi approach. Meas J Int Meas Confed 46:3064–3072. https://doi.org/10.1016/j.measurement.2013.06.001

    Article  Google Scholar 

  17. Hooper RM, Henshall JL, Klopfer A (1999) Wear of polycrystalline diamond tools used in the cutting of metal matrix composites. Int J Refract Met Hard Mater 17:103–109. https://doi.org/10.1016/S0263-4368(98)00040-7

    Article  CAS  Google Scholar 

  18. Maji P, Ghosh SK, Nath RK, Karmakar R (2020) Microstructural, mechanical and wear characteristics of aluminum matrix composites fabricated by friction stir processing. J Braz Soc Mech Sci Eng 42:191. https://doi.org/10.1007/s40430-020-02279-5

    Article  CAS  Google Scholar 

  19. Murthy IN, Babu NA, Rao JB (2014) Comparative studies on microstructure and mechanical properties of granulated blast furnace slag and fly ash reinforced AA 2024 composites. J Miner Mater Charact Eng 02:319–333. https://doi.org/10.4236/jmmce.2014.24037

    Article  CAS  Google Scholar 

  20. Chakravarty S, Haldar P, Nandi T, Sutradhar G (2023) Fabrication and machinability studies on cupola slag reinforced aluminium metal matrix composites using Taguchi method. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.02.080

    Article  Google Scholar 

  21. Kiliçkap E, Çakir O, Aksoy M, Inan A (2005) Study of tool wear and surface roughness in machining of homogenised SiCp reinforced aluminium metal matrix composite. J Mater Process Technol 164–165:862–867. https://doi.org/10.1016/j.jmatprotec.2005.02.109

    Article  CAS  Google Scholar 

  22. Idrisi AH, Mourad AHI (2019) Conventional stir casting versus ultrasonic assisted stir casting process: mechanical and physical characteristics of AMCs. J Alloys Compd 805:502–508. https://doi.org/10.1016/j.jallcom.2019.07.076

    Article  CAS  Google Scholar 

  23. Amirkhanlou S, Rezaei MR, Niroumand B, Toroghinejad MR (2011) Refinement of microstructure and improvement of mechanical properties of Al/Al2O3 cast composite by accumulative roll bonding process. Mater Sci Eng A 528:2548–2553. https://doi.org/10.1016/j.msea.2010.12.049

    Article  CAS  Google Scholar 

  24. Behnamian Y, Serate D, Aghaie E et al (2022) Tribological behavior of ZK60 magnesium matrix composite reinforced by hybrid MWCNTs/B4C prepared by stir casting method. Tribol Int 165:107299. https://doi.org/10.1016/j.triboint.2021.107299

    Article  CAS  Google Scholar 

  25. Lakshmi IG, Kanth YR, Rao JB (2022) Influence of Micro and nano particles on mechanical behaviour of slag reinforced AA7075 composites. Mater Sci Forum 1048:33–42. https://doi.org/10.4028/www.scientific.net/MSF.1048.33

    Article  Google Scholar 

  26. Mallikarjuna C, Shashidhara SM, Mallik US, Parashivamurthy KI (2011) Grain refinement and wear properties evaluation of aluminum alloy 2014 matrix-TiB2 in-situ composites. Mater Des 32:3554–3559. https://doi.org/10.1016/j.matdes.2011.01.036

    Article  CAS  Google Scholar 

  27. Ali M, Falih S (2014) Synthesis and characterization of aluminum composites materials reinforced with TiC nano-particles. Jordan J Mech Ind Eng 8:257–264

    Google Scholar 

  28. Bandil K, Vashisth H, Kumar S et al (2019) Microstructural, mechanical and corrosion behaviour of Al–Si alloy reinforced with SiC metal matrix composite. J Compos Mater 53:4215–4223. https://doi.org/10.1177/0021998319856679

    Article  CAS  Google Scholar 

  29. Lakshmikanthan A, Bontha S, Krishna M et al (2019) Microstructure, mechanical and wear properties of the A357 composites reinforced with dual sized SiC particles. J Alloys Compd 786:570–580. https://doi.org/10.1016/j.jallcom.2019.01.382

    Article  CAS  Google Scholar 

  30. Okayasu M, Wu S, Hasanah IU (2022) Effect of carbon nanotubes on the mechanical properties of cast Al–Si–Cu alloys. Mater Sci Technol (United Kingdom) 38:237–245. https://doi.org/10.1080/02670836.2022.2037058

    Article  ADS  CAS  Google Scholar 

  31. Ma J, Ge X, Chang SI, Lei S (2014) Assessment of cutting energy consumption and energy efficiency in machining of 4140 steel. Int J Adv Manuf Technol 74:1701–1708. https://doi.org/10.1007/s00170-014-6101-3

    Article  Google Scholar 

  32. Pul M, Yağmur S (2022) Examination of the effect of B4C and GNP reinforcements on machinability in the machining of Al 6061 matrix B4C/GNP reinforced hybrid composites. J Braz Soc Mech Sci Eng 44:469. https://doi.org/10.1007/s40430-022-03776-5

    Article  CAS  Google Scholar 

  33. Balogun VA, Mativenga PT (2013) Modelling of direct energy requirements in mechanical machining processes. J Clean Prod 41:179–186. https://doi.org/10.1016/j.jclepro.2012.10.015

    Article  Google Scholar 

  34. Suthar J, Patel KM (2018) Processing issues, machining, and applications of aluminum metal matrix composites. Mater Manuf Process 33:499–527. https://doi.org/10.1080/10426914.2017.1401713

    Article  CAS  Google Scholar 

  35. Dinaharan I, Kalaiselvan K, Murugan N (2017) Influence of rice husk ash particles on microstructure and tensile behavior of AA6061 aluminum matrix composites produced using friction stir processing. Compos Commun 3:42–46. https://doi.org/10.1016/j.coco.2017.02.001

    Article  Google Scholar 

  36. Ononiwu NH, Ozoegwu CG, Madushele N, Akinlabi ET (2021) Machinability studies and optimization of aa 6082/fly ash/carbonized eggshell matrix composite. Rev Des Compos Mater Av 31:207–216. https://doi.org/10.18280/rcma.310404

    Article  Google Scholar 

  37. Ramesh Kumar C, JaiGanesh V, Malarvannan RRR (2019) Optimization of drilling parameters in hybrid (Al6061/SiC/B4C/talc) composites by grey relational analysis. J Braz Soc Mech Sci Eng 41:155. https://doi.org/10.1007/s40430-019-1661-7

    Article  CAS  Google Scholar 

  38. Kaynak Y, Karaca HE, Noebe RD, Jawahir IS (2013) Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: a comparison of tool-wear performance with dry and MQL machining. Wear 306:51–63. https://doi.org/10.1016/j.wear.2013.05.011

    Article  CAS  Google Scholar 

  39. Muthukrishnan N, Murugan M, Prahlada Rao K (2008) Machinability issues in turning of Al–SiC (10p) metal matrix composites. Int J Adv Manuf Technol 39:211–218. https://doi.org/10.1007/s00170-007-1220-8

    Article  Google Scholar 

  40. Grzesik W (2008) Advanced machining processes of metallic materials: theory, modelling and applications. Adv Mach Process Met Mater Theory Model Appl. https://doi.org/10.1016/B978-0-08-044534-2.X5001-2

    Article  Google Scholar 

  41. Akhtar SS (2021) A critical review on self-lubricating ceramic-composite cutting tools. Ceram Int 47:20745–20767. https://doi.org/10.1016/j.ceramint.2021.04.094

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Department of Science, Technology and Biotechnology, Government of West Bengal (Memo No.: 114 (Sanc.)/STBT–11012(16)/16/2021–ST SEC dated 28.04.2022).

Funding

This work was funded by Department of Science, Technology and Biotechnology, Government of West Bengal (Memo No.: 114 (Sanc.)/STBT–11012(16)/16/2021–ST SEC dated 28.04.2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Haldar.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Technical Editor: Lincoln Cardoso Brandao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakravarty, S., Sikder, R., Haldar, P. et al. Exploring energy aspects and tool wear on dry turning of cupola slag-reinforced aluminium metal matrix composites. J Braz. Soc. Mech. Sci. Eng. 46, 59 (2024). https://doi.org/10.1007/s40430-023-04651-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04651-7

Keywords

Navigation