Skip to main content
Log in

A unique and comprehensive approach to investigate the transverse free vibration of non-uniform and functionally graded Euler–Bernoulli beams

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This study investigates the transverse free vibration of general type of non-uniform beams with general non-classical boundary conditions at both ends based on the exploitation of Cauchy’s formula for iterated integrals. A review of related sources shows that despite of many studies and various methods used to investigate the transverse vibrations of non-uniform and inhomogeneous beams, no solutions applicable for free vibrations in such beams with general boundary conditions were proposed. In this article, Hamilton's principle is utilized to derive the partial differential equation governing the transverse vibration of the inhomogeneous non-uniform beam as well as the general corresponding boundary conditions. The effect of the boundary conditions, mass object, eccentricity and aspect ratios on the natural dimensionless transverse frequencies has been analyzed. The flowcharts of analyzing frequency parameters and mode shapes are also given in details to state the proposed method visually. The performance of the proposed method has been verified through numerical examples available in the published literature. All results exhibit that the proposed method is capable to analyze the free vibration of general type of non-uniform and axially FG Euler–Bernoulli beams with various general boundary conditions. Utilizing the proposed method and their related equations, it is possible to analyze the vibrations of different types of homogeneous uniform, homogeneous non-uniform, functionally graded uniform, and functionally graded non-uniform beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Lindberg GM (1963) Vibration of Non uniform Beams. Aeronautical Quart, pp 387–395.

  2. Gaines JH, Voltera E (1965) Transverse vibrations of Cantilever Bars of variable cross section. J Acoust Soc Am 39(4):674–679

    Article  Google Scholar 

  3. Downs B (1977) Transverse vibrations of cantilever beams having unequal breadth and depth tapers. J Appl Mech, pp 737–742.

  4. Naguleswaran S (1992) Vibration of an Euler-Bernoulli beam of constant depth and with linearly varying breadth. J Sound Vib 153(3):509–522

    Article  MATH  Google Scholar 

  5. Naguleswaran S (1994) A direct solution for the transverse vibration of Euler-Bernoulli wedge and cone beam. J Sound Vib 172(3):289–304

    Article  MATH  Google Scholar 

  6. Laura PAA, Gutierrezi RH, Rossi RE (1996) Free vibrations of beams of bilinearly varying thickness. Ocean Eng 23(1):1–6

    Article  Google Scholar 

  7. Zhou D, Cheung YK (2000) The free vibration of a type of tapered beams. Comput Methods Appl Mech Eng 188:203–219

    Article  MATH  Google Scholar 

  8. Mehmet CE, Metin A, Vedat T (2007) Vibration of a variable cross-section beam. Mech Res Commun 34:78–84

    Article  MATH  Google Scholar 

  9. Abdolghani SM, Ewis KM, Mahmoud AA (2015) Vibration of a circular beam with variable cross sections using differential transformation method. Beni Suef University J Basic Appl Sci 4:185–191

    Article  Google Scholar 

  10. Lee JW, Lee JY (2016) Free vibration analysis using the transfer matrix method on a tapered beam. Comput Struct 164:75–82

    Article  Google Scholar 

  11. Kim T, Lee B, Lee U (2019) State vector equation method for the frequency domain spectral element modelling of non-uniform one-dimensional structures. Int J Mech Sci 157–158:75–86

    Article  Google Scholar 

  12. Rosa MAD, Auciello NM (1996) Free vibrations of tapered beams with flexible ends. Comput Struct 60(2):197–202

    Article  MATH  Google Scholar 

  13. Auciello NM (1996) Transverse vibrations of a linearly tapered cantilever beam with tip mass of rotatory inertia and eccentricity. J Sound Vib 194(1):25–34

    Article  Google Scholar 

  14. Lai HY, Chen CK, Hsu JC (2008) Free vibration of non-uniform Euler-Bernoulli Beams by the Adomian modified decomposition method. Comp Model Eng Sci 34:187–113

    MathSciNet  MATH  Google Scholar 

  15. Celik I (2018) Free vibration of non-uniform Euler-Bernoulli beam under various supporting conditions using Chebyshev Wavelet Collocation Method. Appl Math Model 54:268–280

    Article  MathSciNet  MATH  Google Scholar 

  16. Ghannadiasl A, Zamiri A, Borhanifar A (2020) Free vibrations of non-uniform beams on a non-uniform Winkler foundation using the Laguerre Collocation Method. J Braz Soc Mech Sci Eng 42(242):1–12

    Google Scholar 

  17. Datta AK, Sil SN (1996) An analysis of free undamped vibration of beams of varying cross-section. Comput Struct 59(3):479–483

    Article  MATH  Google Scholar 

  18. Huang Y, Li XF (2010) A new approach for free vibration of axially functionally graded beams with non-uniform cross-section. J Sound Vib 329:2291–2303

    Article  Google Scholar 

  19. Liu P, Lin K, Liu H, Qin R (2016) Free transverse vibration analysis of axially functionally graded tapered Euler-Bernoulli beams through Spline Finite Point Method. Shock Vib 5891030:1–23

    Google Scholar 

  20. Zhao Y, Huang Y, Guo M (2017) A novel approach for free vibration of axially functionally graded beams with non-uniform cross-section based on Chebyshev polynomials theory. Compos Struct, pp 277–284.

  21. Cao D, Cao Y, Wang J, Yao M, Zhang W (2019) Analytical analysis of free vibration of non-uniform and homogenous beams: asymptotic perturbation approach. Appl Math Model 65:526–534

    Article  MathSciNet  MATH  Google Scholar 

  22. Sahu RP, Sutar MK, Pattnaik S (2022) A generalized finite element approach towards the free vibration analysis of non-uniform axially functionally graded beam. Sci Iran 29(2):556–571

    Google Scholar 

  23. Hein H, Feklistova L (2011) Free vibrations of non-uniform and axially functionally graded beams using Haar Wavelets. Eng Struct 33:3696–3701

    Article  Google Scholar 

  24. Sari MS, Al-Dahidi S (2020) Vibration characteristic of multiple functionally graded non uniform beams. J Vib Control 10:2205–2218

    Google Scholar 

  25. Wu HL, Yang J, Kitipornchai S (2016) Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections. Compos B Eng 90:86–96

    Article  Google Scholar 

  26. Wu HL, Li Y, Li L, Kitipornchai S, Wang L, Yang J (2022) Free vibration analysis of functionally graded graphene nanocomposite beams partially in contact with fluid. Compos Struct 291:115609

    Article  Google Scholar 

  27. Song M, Gong Y, Yang J, Zhu W, Kitipornchai S (2020) Nonlinear free vibration of cracked functionally graded graphene platelet reinforced nanocomposite beams in thermal environments. J Sound Vib 468:115115

    Article  Google Scholar 

  28. Song M, Gong Y, Yang J, Zhu W, Kitipornchai S (2019) Free vibration and buckling analyses of edge-cracked functionally graded multilayer graphene nanoplatelet-reinforced composite beams resting on an elastic foundation. J Sound Vib 458:89–108

    Article  Google Scholar 

  29. Song M, Zhou L, Karunasena W, Yang J, Kitipornchai S (2022) Nonlinear dynamic instability of edge-cracked functionally graded graphene-reinforced composite beams. Nonlinear Dyn 109(4):2423–2441

    Article  Google Scholar 

  30. Rao SS (2007) Vibration of continuous systems. Wiley, New Jersey, p 318

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Nazemnezhad.

Additional information

Technical Editor: Aurelio Araujo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Components of the \(a\) matrix,\(a_{ij}\) \(\left( {i = 1 - 4, j = 1 - 4} \right)\) in Eq. (19)

$$\begin{gathered} a_{11} = 0,\;a_{12} = 1,\;a_{13} = \hat{G}_{1L} ,\;a_{14} = \gamma_{0} \hat{G}_{1L} + \hat{G}_{2L} , \hfill \\ a_{21} = 1,\;a_{22} = - \gamma_{0} ,\;a_{23} = \hat{G}_{3L} ,\;a_{24} = \gamma_{0} \hat{G}_{3L} + \hat{G}_{4L} \hfill \\ a_{31} = 6 + \hat{G}_{2R} + \left( {\gamma + 3} \right)\hat{G}_{1R} , \hfill \\ a_{32} = 3\left[ {2 + \hat{G}_{2R} + \hat{G}_{1R} \left( {\gamma + 2} \right)} \right], \hfill \\ a_{33} = 6\left[ {\hat{G}_{1R} \left( {\gamma + 1} \right) + \hat{G}_{2R} } \right],\;a_{34} = 6\left( {\gamma \hat{G}_{1R} + \hat{G}_{2R} } \right), \hfill \\ a_{41} = \left( {\gamma + 3} \right)\hat{G}_{3R} + \hat{G}_{4R} - 6\left( {\gamma - 1} \right), \hfill \\ a_{42} = 3\left[ {\left( {\gamma + 2} \right)\hat{G}_{3R} + \hat{G}_{4R} - 2\gamma } \right], \hfill \\ a_{43} = 6\left[ {\left( {\gamma + 1} \right)\hat{G}_{3R} + \hat{G}_{4R} } \right],\; a_{44} = 6\left( {\gamma \hat{G}_{3R} + \hat{G}_{4R} } \right) \hfill \\ \end{gathered}$$
(A.1)

The column vector \(b,\) \(b_{i} \left( {i = 1 - 4} \right)\) in Eq. (19)

$$\begin{gathered} b_{1} = 0, \hfill \\ b_{2} = 0, \hfill \\ b_{3} = \left( {\gamma \hat{G}_{1R} + \hat{G}_{2R} } \right)\left( {6B_{2} - 12B_{1} - \beta^{4} B_{3} } \right) - 3\left[ {\beta^{4} \left( {\hat{G}_{1R} B_{5} + 2B_{6} } \right) - 2\hat{G}_{1R} B_{4} } \right] \hfill \\ b_{4} = \left( {\gamma \hat{G}_{3R} + \hat{G}_{4R} } \right)\left( {6B_{2} - 12B_{1} - \beta^{4} B_{3} } \right) - 3\left[ {\beta^{4} \left( {\hat{G}_{3R} B_{5} - 2\gamma B_{6} + 2B_{7} } \right) - 2\hat{G}_{3R} B_{4} } \right] \hfill \\ \end{gathered}$$
(A.2)

Solution to the unknowns \(C_{i} \left( {i = 1 - 4} \right)\) utilizing Cramer’s rule

$$C_{1} = \frac{{{\text{det}}}}{\zeta }\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & {a_{12} } \\ 0 & {a_{22} } \\ \end{array} } & {\begin{array}{*{20}c} {a_{13} } & {a_{14} } \\ {a_{23} } & {a_{24} } \\ \end{array} } \\ {\begin{array}{*{20}c} {b_{3} } & {a_{32} } \\ {b_{4} } & {a_{42} } \\ \end{array} } & {\begin{array}{*{20}c} {a_{33} } & {a_{34} } \\ {a_{43} } & {a_{44} } \\ \end{array} } \\ \end{array} } \right] = \frac{{b_{3} A_{1} - b_{4} A_{2} }}{\zeta }$$
(A.3)
$$C_{2} = \frac{{{\text{det}}}}{\zeta }\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {a_{11} } & 0 \\ {a_{21} } & 0 \\ \end{array} } & {\begin{array}{*{20}c} {a_{13} } & {a_{14} } \\ {a_{23} } & {a_{24} } \\ \end{array} } \\ {\begin{array}{*{20}c} {a_{31} } & {b_{3} } \\ {a_{41} } & {b_{4} } \\ \end{array} } & {\begin{array}{*{20}c} {a_{33} } & {a_{34} } \\ {a_{43} } & {a_{44} } \\ \end{array} } \\ \end{array} } \right] = - \frac{{b_{3} A_{3} - b_{4} A_{4} }}{\zeta }$$
(A.4)
$$C_{3} = \frac{{{\text{det}}}}{\zeta }\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {a_{11} } & {a_{12} } \\ {a_{21} } & {a_{22} } \\ \end{array} } & {\begin{array}{*{20}c} 0 & {a_{14} } \\ 0 & {a_{24} } \\ \end{array} } \\ {\begin{array}{*{20}c} {a_{31} } & {a_{32} } \\ {a_{41} } & {a_{42} } \\ \end{array} } & {\begin{array}{*{20}c} {b_{3} } & {a_{34} } \\ {b_{4} } & {a_{44} } \\ \end{array} } \\ \end{array} } \right] = \frac{{b_{3} A_{5} - b_{4} A_{6} }}{\zeta }$$
(A.5)
$$C_{4} = \frac{{{\text{det}}}}{\zeta }\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {a_{11} } & {a_{12} } \\ {a_{21} } & {a_{22} } \\ \end{array} } & {\begin{array}{*{20}c} {a_{13} } & 0 \\ {a_{23} } & 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {a_{31} } & {a_{32} } \\ {a_{41} } & {a_{42} } \\ \end{array} } & {\begin{array}{*{20}c} {a_{33} } & {b_{3} } \\ {a_{43} } & {b_{4} } \\ \end{array} } \\ \end{array} } \right] = - \frac{{b_{3} A_{7} - b_{4} A_{8} }}{\zeta }$$
(A.6)

where coefficients \(A_{1}\) to \(A_{8}\) and \(\zeta\) are given by Eqs. (A.7) to (A.11), respectively.

$$A_{1} = {\text{det}}\left[ {\begin{array}{*{20}c} {a_{12} } & {a_{13} } & {a_{14} } \\ {a_{22} } & {a_{23} } & {a_{24} } \\ {a_{42} } & {a_{43} } & {a_{44} } \\ \end{array} } \right],\quad A_{2} = {\text{det}}\left[ {\begin{array}{*{20}c} {a_{12} } & {a_{13} } & {a_{14} } \\ {a_{22} } & {a_{23} } & {a_{24} } \\ {a_{32} } & {a_{33} } & {a_{34} } \\ \end{array} } \right]$$
(A.7)
$$A_{3} = {\text{det}}\left[ {\begin{array}{*{20}c} {a_{11} } & {a_{13} } & {a_{14} } \\ {a_{21} } & {a_{23} } & {a_{24} } \\ {a_{41} } & {a_{43} } & {a_{44} } \\ \end{array} } \right], A_{4} = {\text{det}}\left[ {\begin{array}{*{20}c} {a_{11} } & {a_{13} } & {a_{14} } \\ {a_{21} } & {a_{23} } & {a_{24} } \\ {a_{31} } & {a_{33} } & {a_{34} } \\ \end{array} } \right]$$
(A.8)
$$A_{5} = {\text{det}}\left[ {\begin{array}{*{20}c} {a_{11} } & {a_{12} } & {a_{14} } \\ {a_{21} } & {a_{22} } & {a_{24} } \\ {a_{41} } & {a_{42} } & {a_{44} } \\ \end{array} } \right], A_{6} = {\text{det}}\left[ {\begin{array}{*{20}c} {a_{11} } & {a_{12} } & {a_{14} } \\ {a_{21} } & {a_{22} } & {a_{24} } \\ {a_{31} } & {a_{32} } & {a_{34} } \\ \end{array} } \right]$$
(A.9)
$$A_{7} = {\text{det}}\left[ {\begin{array}{*{20}c} {a_{11} } & {a_{12} } & {a_{13} } \\ {a_{21} } & {a_{22} } & {a_{23} } \\ {a_{41} } & {a_{42} } & {a_{43} } \\ \end{array} } \right], A_{8} = {\text{det}}\left[ {\begin{array}{*{20}c} {a_{11} } & {a_{12} } & {a_{13} } \\ {a_{21} } & {a_{22} } & {a_{23} } \\ {a_{31} } & {a_{32} } & {a_{33} } \\ \end{array} } \right]$$
(A.10)

and

$$\zeta = {\text{det}}\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {a_{11} } & {a_{12} } \\ {a_{21} } & {a_{22} } \\ \end{array} } & {\begin{array}{*{20}c} {a_{13} } & {a_{14} } \\ {a_{23} } & {a_{24} } \\ \end{array} } \\ {\begin{array}{*{20}c} {a_{31} } & {a_{32} } \\ {a_{41} } & {a_{42} } \\ \end{array} } & {\begin{array}{*{20}c} {a_{33} } & {a_{34} } \\ {a_{43} } & {a_{44} } \\ \end{array} } \\ \end{array} } \right]$$
(A.11)
$$h_{1} \left( X \right) = \frac{2}{\zeta }\left\{ {\left[ {\left( {\gamma \hat{G}_{3R} + \hat{G}_{4R} } \right)A_{2} - \left( {\gamma \hat{G}_{1R} + \hat{G}_{2R} } \right)A_{1} } \right]X^{3} + 3\left[ {\left( {\gamma \hat{G}_{1R} + \hat{G}_{2R} } \right)A_{3} - \left( {\gamma \hat{G}_{3R} + \hat{G}_{4R} } \right)A_{4} } \right]X^{2} + 6\left[ {\left( {\gamma \hat{G}_{3R} + \hat{G}_{4R} } \right)A_{6} - \left( {\gamma \hat{G}_{1R} + \hat{G}_{2R} } \right)A_{5} } \right]X + 6\left[ {\left( {\gamma \hat{G}_{1R} + \hat{G}_{2R} } \right)A_{7} - \left( {\gamma \hat{G}_{3R} + \hat{G}_{4R} } \right)A_{8} } \right]} \right\}.$$
(A.12)
$$h_{2} \left( X \right) = \frac{1}{\zeta }\left[ {\left( {\hat{G}_{1R} A_{1} - \hat{G}_{3R} A_{2} } \right)X^{3} + 3\left( {\hat{G}_{3R} A_{4} - \hat{G}_{1R} A_{3} } \right)X^{2} + 6\left( {\hat{G}_{1R} A_{5} - \hat{G}_{3R} A_{6} } \right) X + 6\left( {\hat{G}_{3R} A_{8} - \hat{G}_{1R} A_{7} } \right)} \right].$$
(A.13)
$$h_{3} \left( X \right) = \frac{{\beta^{4} }}{\zeta }\left[ { - \left( {A_{1} + A_{2} \gamma } \right)X^{3} + 3\left( {A_{3} + A_{4} \gamma } \right)X^{2} - 6\left( {A_{5} + A_{6} \gamma } \right)X + 6\left( {A_{7} + \gamma A_{8} } \right)} \right].$$
(A.14)
$$h_{4} \left( X \right) = \frac{{\beta^{4} }}{\zeta }\left( {A_{2} X^{3} - 3A_{4} X^{2} + 6A_{6} X - 6A_{8} } \right)$$
(A.15)

Appendix B

See Table 23

Table 23 Simulation of classical boundary conditions C: Clamped, S: Simply, G: Guided and F: Free

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini-Hashemi, K., Talebitooti, R., Hosseini-Hashemi, S. et al. A unique and comprehensive approach to investigate the transverse free vibration of non-uniform and functionally graded Euler–Bernoulli beams. J Braz. Soc. Mech. Sci. Eng. 45, 551 (2023). https://doi.org/10.1007/s40430-023-04469-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04469-3

Keywords

Navigation