Skip to main content
Log in

Calculation of SIFs for an edge crack in an isotropic plane under hygrothermal shock

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this research, the eXtended Finite Element Methode (XFEM) was used to calculate stress intensity factors (SIFs) in an isotropic 2D finite domain with a stationary edge crack under thermal shock. Fully coupled displacement, temperature and moisture fields were considered in governing equations. Fourier’s and Fick’s laws were used for heat and moisture flux respectively. Also, Soret flux was used for the caused moisture flux by heat. The SIFs were obtained for hygrothermal loadings using the interaction integral method. The discretization of the governing equations was done using the Galerkin Method, and then the Newmark time integration scheme is used to solve them. In several numerical examples, the effect of hygrothermal shock on SIFs as well as temperature and moisture distribution is studied. Results show that in addition to the effect on moisture diffusion, the Sort number affects the time history of the SIFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Gasch T, Malm R, Ansell A (2016) A coupled hygro-thermo-mechanical model for concrete subjected to variable environmental conditions. Int J Solids Struct 91:143–156

    Article  Google Scholar 

  2. Fourier JBJ (2009) The analytical theory of heat. cambridge library collection—mathematics. Cambridge University Press, Cambridge.

  3. Sih GC, Michopoulos J, Chou SC (2012) Hygrothermoelasticity. Springer, Dordrecht.

  4. Yang YC, Chu SS, Lee HL, Lin SL (2006) Hybrid numerical method applied to transient hygrothermal analysis in an annular cylinder. Int Commun Heat Mass Transfer 33(1):102–111

    Article  Google Scholar 

  5. Szekeres A (2000) Analogy between heat and moisture: Thermo-hygro-mechanical tailoring of composites by taking into account the second sound phenomenon. Comput Struct 76(1–3):145–152

    Article  Google Scholar 

  6. Szekeres A, Engelbrecht J (2000) Coupling of generalized heat and moisture transfer. Periodica Polytechnica Mech Eng 44(1):161–170

    Google Scholar 

  7. Gawin D, Pesavento F, Schrefler BA (2003) Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation. Comput Methods Appl Mech Eng 192(13–14):1731–1771

    Article  MATH  Google Scholar 

  8. Bary B, Ranc G, Durand S, Carpentier O (2008) A coupled thermo-hydro-mechanical-damage model for concrete subjected to moderate temperatures. Int J Heat Mass Transf 51(11–12):2847–2862

    Article  MATH  Google Scholar 

  9. Beneš M, Štefan R (2015) Hygro-thermo-mechanical analysis of spalling in concrete walls at high temperatures as a moving boundary problem. Int J Heat Mass Transf 85:110–134

    Article  Google Scholar 

  10. Patel BP, Ganapathi M, Makhecha DP (2002) Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory. Compos Struct 56(1):25–34

    Article  Google Scholar 

  11. Rao VV, Sinha PK (2004) Dynamic response of multidirectional composites in hygrothermal environments. Compos Struct 64(3–4):329–338

    Article  Google Scholar 

  12. Benkhedda A, Tounsi A (2008) Effect of temperature and humidity on transient hygrothermal stresses during moisture desorption in laminated composite plates. Compos Struct 82(4):629–635

    Article  Google Scholar 

  13. Kundu CK, Han JH (2009) Vibration characteristics and snapping behavior of hygro-thermoelastic composite doubly curved shells. Compos Struct 91(3):306–317

    Article  Google Scholar 

  14. Upadhyay AK, Pandey R, Shukla KK (2010) Nonlinear flexural response of laminated composite plates under hygro-thermo-mechanical loading. Commun Nonlinear Sci Numer Simul 15(9):2634–2650

    Article  MathSciNet  MATH  Google Scholar 

  15. Cinefra M, Petrolo M, Li G, Carrera E (2017) Hygrothermal analysis of multilayered composite plates by variable kinematic finite elements. J Therm Stresses 40(12):1502–1522

    Article  Google Scholar 

  16. Chiba R, Sugano Y (2011) Transient hygrothermoelastic analysis of layered plates with onedimensional temperature and moisture variations through the thickness. Compos Struct 93(9):2260–2268

    Article  Google Scholar 

  17. Zenkour AM (2010) Hygro-thermo-mechanical effects on FGM plates resting on elastic foundations. Compos Struct 93(1):234–238

    Article  Google Scholar 

  18. Zidi M, Tounsi A, Houari MS, Bég OA (2014) Bending analysis of FGM plates under hygrothermo-mechanical loading using a four variable refined plate theory. Aerosp Sci Technol 34:24–34

    Article  Google Scholar 

  19. Hosseini SM, Ghadiri Rad MH (2017) Application of meshless local integral equations for twodimensional transient coupled hygrothermoelasticity analysis: moisture and thermoelastic wave propagations under shock loading. J Therm Stresses 40(1):40–54

    Article  Google Scholar 

  20. Sih GC (1983) Transient hygrothermal stresses in plates with and without cavities. Fibre Sci Technol 18(3):181–201.

  21. Chao CK, Chang RC (1993) Hygrothermal stresses for a plane crack in a generally anisotropic plate. Eng Fract Mech 45(6):831–841

    Article  Google Scholar 

  22. Hsieh MC, Hwu C (2006) Hygrothermal stresses in unsymmetric laminates disturbed by elliptical holes. J Appl Mech 73(2):228–239

    Article  MATH  Google Scholar 

  23. Dang H, Zhao M, Fan C, Chen Z (2018) Analysis of arbitrarily shaped planar cracks in threedimensional isotropic hygrothermoelastic media. J Thermal Stress 41(6):776–803.

  24. Zhao M, Dang H, Fan C, Chen Z (2018) Three-dimensional steady-state general solution for isotropic hygrothermoelastic media. J Therm Stresses 41(8):951–972

    Article  Google Scholar 

  25. Dag S, Yildirim B, Arslan O, Arman EE (2012) Hygrothermal fracture analysis of orthotropic materials using J k-Integral. J Therm Stresses 35(7):596–613

    Article  Google Scholar 

  26. Topal S, Dag S (2014) Mixed-mode hygrothermal fracture analysis of orthotropic functionally graded materials using J-Integral. In: Engineering systems design and analysis, vol 45837, p. V001T04A001. American Society of Mechanical Engineers.

  27. Hetnarski RB, Eslami MR, Gladwell GM (2009) Thermal stresses: advanced theory and applications. Springer, Berlin

    MATH  Google Scholar 

  28. Li C, Guo H, Tian X (2017) Soret effect on the shock responses of generalized diffusionthermoelasticity. J Therm Stresses 40(12):1563–1574

    Article  Google Scholar 

  29. Rokhi MM, Shariati M (2013) Implementation of the extended finite element method for coupled dynamic thermoelastic fracture of a functionally graded cracked layer. J Braz Soc Mech Sci Eng 35:69–81

    Article  Google Scholar 

  30. Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35(2):379–386

    Article  Google Scholar 

  31. Hosseini-Tehrani P, Eslami MR, Daghyani HR (2001) Dynamic crack analysis under coupled thermoelastic assumption. J Appl Mech 68(4):584–588

    Article  MATH  Google Scholar 

  32. Zarmehri NR, Nazari MB, Rokhi MM (2018) XFEM analysis of a 2D cracked finite domain under thermal shock based on Green-Lindsay theory. Eng Fract Mech 191:286–299

    Article  Google Scholar 

  33. Bateni M, Eslami MR (2017) Thermally nonlinear generalized thermoelasticity of a layer. J Therm Stresses 40(10):1320–1338

    Article  Google Scholar 

  34. Zamani A, Reza EM (2009) Coupled dynamical thermoelasticity of a functionally graded cracked layer. J Therm Stresses 32(10):969–985

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Mahdizadeh Rokhi.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ \left[ M \right] = \left[ {\begin{array}{*{20}c} {\left[ {M_{1} } \right]} & {\left[ 0 \right]} & {\left[ 0 \right]} \\ {\left[ 0 \right]} & {\left[ 0 \right]} & {\left[ 0 \right]} \\ {\left[ 0 \right]} & {\left[ 0 \right]} & {\left[ 0 \right]} \\ \end{array} } \right] $$
$$ \left[ C \right] = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 \\ {\left[ {C_{1} } \right]} & {\left[ {C_{2} } \right]} & {\left[ {C_{3} } \right]} \\ {\left[ {C_{4} } \right]} & {\left[ {C_{5} } \right]} & {\left[ {C_{6} } \right]} \\ \end{array} } \right] $$
$$ \left[ K \right] = \left[ {\begin{array}{*{20}c} {\left[ {K_{1} } \right]} & {\left[ {K_{2} } \right]} & {\left[ {K_{3} } \right]} \\ {\left[ 0 \right]} & {\left[ {K_{4} } \right]} & {\left[ 0 \right]} \\ {\left[ 0 \right]} & {\left[ {K_{5} } \right]} & {\left[ {K_{6} } \right]} \\ \end{array} } \right] $$
$$ \left\{ \Delta \right\} = \left\{ {{\text{a}}_{h}^{{\text{u}}} ,{\text{b}}_{h}^{{\text{u}}} ,{\text{c}}_{hm}^{{\text{u}}} ,{\text{a}}_{h}^{{\text{v}}} ,{\text{b}}_{h}^{{\text{v}}} ,{\text{c}}_{hm}^{{\text{v}}} ,{\text{a}}_{h}^{{\text{T}}} ,{\text{b}}_{h}^{{\text{T}}} ,{\text{c}}_{hm}^{{\text{T}}} ,{\text{a}}_{h}^{C} ,{\text{b}}_{h}^{C} ,{\text{c}}_{hm}^{C} } \right\}^{T} $$
$$ h = 1, \ldots ,ne, m = 1, \ldots ,4 $$
$$ \left\{ F \right\} = \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\mathop \int \limits_{V} B_{x} S_{l} dV + \mathop \int \limits_{A} Tr_{x}^{n} S_{l} dA} \\ {\mathop \int \limits_{V} B_{y} S_{l} dV + \mathop \int \limits_{A} Tr_{y}^{n} S_{l} dA} \\ {\mathop \int \limits_{A} T_{,x} n_{x} S_{l} dA + \mathop \int \limits_{A} T_{,y} n_{y} S_{l} dA} \\ \end{array} } \\ {\mathop \int \limits_{A} \left( {V_{4} T_{,x} n_{,x} } \right)S_{l} dA + \mathop \int \limits_{A} \left( {V_{4} T_{,y} n_{,y} } \right)S_{l} dA + \mathop \int \limits_{A} \left( {c_{,x} n_{,x} } \right)S_{l} dA + \mathop \int \limits_{A} \left( {c_{,y} n_{,y} } \right)S_{l} dA} \\ \end{array} } \right\} $$
$$ \left[ {M_{1} } \right] = \mathop \int \limits_{V} \rho \left[ B \right]^{T} \left[ B \right]dV $$
$$ \left[ {C_{1} } \right] = \mathop \int \limits_{V} W_{1} \left[ {St} \right]^{T} \left[ {S1} \right]dV $$
$$ \left[ {C_{2} } \right] = \mathop \int \limits_{V} W_{2} \left[ {St} \right]^{T} \left[ {St} \right]dV $$
$$ \left[ {C_{3} } \right] = \mathop \int \limits_{V} W_{3} \left[ {St} \right]^{T} \left[ {St} \right]dV $$
$$ \left[ {C_{4} } \right] = \mathop \int \limits_{V} V_{1} \left[ {St} \right]^{T} \left[ {S1} \right]dV $$
$$ \left[ {C_{5} } \right] = \mathop \int \limits_{V} V_{2} \left[ {St} \right]^{T} \left[ {St} \right]dV $$
$$ \left[ {C_{6} } \right] = \mathop \int \limits_{V} V_{3} \left[ {St} \right]^{T} \left[ {St} \right]dV $$
$$ \left[ {K_{1} } \right] = \mathop \int \limits_{V} \left[ {S2} \right]^{T} \left[ D \right]\left[ {S2} \right]dV $$
$$ \left[ {K_{2} } \right] = - \mathop \int \limits_{V} \gamma_{1} \left[ {S1} \right]^{T} \left[ {St} \right]dV $$
$$ \left[ {K_{3} } \right] = - \mathop \int \limits_{V} \gamma_{2} \left[ {S1} \right]^{T} \left[ {St} \right]dV $$
$$ \left[ {K_{4} } \right] = \mathop \int \limits_{V} \left[ {S3} \right]^{T} \left[ {S3} \right]dV $$
$$ \left[ {K_{5} } \right] = \mathop \int \limits_{V} V_{4} \left[ {S3} \right]^{T} \left[ {S3} \right]dV $$
$$ \left[ {K_{6} } \right] = \mathop \int \limits_{V} \left[ {S3} \right]^{T} \left[ {S3} \right]dV $$
$$ \left[ {St} \right] = \left[ {\begin{array}{*{20}c} {N_{1} } & \cdots & {N_{4} } & {\Phi_{1} } & \cdots & {\Phi_{4} } & {\Psi_{11} } & \cdots & {\Psi_{44} } \\ \end{array} } \right] $$
$$ \left[ B \right] = \left[ {\begin{array}{*{20}c} {N_{1} } & \cdots & {N_{4} } & 0 & \cdots & 0 & {\Phi_{1} } & \cdots & \cdots & 0 & {\Psi_{11} } & \cdots & {\Psi_{44} } & 0 & \cdots & 0 \\ 0 & \cdots & 0 & {N_{1} } & \cdots & {N_{4} } & 0 & \cdots & \cdots & {\Phi_{4} } & 0 & \cdots & 0 & {\Psi_{11} } & \cdots & {\Psi_{44} } \\ \end{array} } \right] $$
$$\left[ {S1} \right] = \left[ {\begin{array}{*{20}c} {N_{1,x} } & \cdots & {N_{4,x} } & {N_{1,y} } & {\begin{array}{*{20}c} \cdots & {N_{4,y} } & {\Phi_{1,x} } & \cdots & {\Phi_{4,x} } & {\Phi_{1,y} } & \cdots & {\Phi_{4,y} } \\ \end{array} } \\ \end{array} } \right.\begin{array}{*{20}c} { \Psi_{11,x} } & \cdots & {\Psi_{44,x} } & {\Psi_{11,y} } & \cdots & {\Psi_{44,y} } \\ \end{array} ]$$
$$\left[ {S2} \right] = \left[ {\begin{array}{*{20}c} {N_{1,x} } & {N_{2,x} } & {N_{3,x} } & {N_{4,x} } & 0 & 0 & 0 & 0 & {\Phi_{1,x} } & {\Phi_{2,x} } \\ 0 & 0 & 0 & 0 & {N_{1,y} } & {N_{2,y} } & {N_{3,y} } & {N_{4,y} } & 0 & 0 \\ {N_{1,y} } & {N_{2,y} } & {N_{3,y} } & {N_{4,y} } & {N_{1,x} } & {N_{2,x} } & {N_{3,x} } & {N_{4,x} } & {\Phi_{1,y} } & {\Phi_{2,y} } \\ \end{array} } \right.\left. {\begin{array}{*{20}c} {\Phi_{3,x} } & {\Phi_{4,x} } & 0 & \ldots & 0 & {\Psi_{11,x} } & \ldots & {\Psi_{44,x} } & 0 & \ldots & 0 \\ 0 & 0 & {\Phi_{1,y} } & \ldots & {\Phi_{4,y} } & 0 & \ldots & 0 & {\Psi_{11,y} } & \ldots & {\Psi_{44,y} } \\ {\Phi_{3,y} } & {\Phi_{4,y} } & {\Phi_{1,x} } & \ldots & {\Phi_{4,x} } & {\Psi_{11,y} } & \ldots & {\Psi_{44,y} } & {\Psi_{11,x} } & \ldots & {\Psi_{44,x} } \\ \end{array} } \right]$$
$$\left[ {S3} \right] = \left[ {\begin{array}{*{20}c} {N_{{1,x}} } & {N_{{2,x}} } & {N_{{3,x}} } & {N_{{4,x}} } & {\Phi _{{1,x}} } & {\Phi _{{2,x}} } & {\Phi _{{3,x}} } & {\Phi _{{4,x}} } & {\Psi _{{11,x}} } & \cdots & {\Psi _{{44,x}} } \\ {N_{{1,y}} } & {N_{{2,y}} } & {N_{{3,y}} } & {N_{{4,y}} } & {\Phi _{{1,y}} } & {\Phi _{{2,y}} } & {\Phi _{{3,y}} } & {\Phi _{{4,y}} } & {\Psi _{{11,y}} } & \cdots & {\Psi _{{44,y}} } \\ \end{array} } \right]$$
$$\left[ D \right] = \left[ {\begin{array}{*{20}c} {\hat{\lambda } + 2\hat{\mu }} & {\hat{\lambda }} & 0 \\ {\hat{\lambda }} & {\hat{\lambda } + 2\hat{\mu }} & 0 \\ 0 & 0 & {\hat{\mu }} \\ \end{array} } \right]\; for\; plane \;strain$$

.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, A., Nazari, M.B. & Rokhi, M.M. Calculation of SIFs for an edge crack in an isotropic plane under hygrothermal shock. J Braz. Soc. Mech. Sci. Eng. 45, 418 (2023). https://doi.org/10.1007/s40430-023-04299-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04299-3

Keywords

Navigation