Skip to main content
Log in

On dynamic response of double-layer rectangular sandwich plates with FML face-sheets and metal foam cores under blast loading

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the dynamic response of fiber-metal laminate (FML) double-layer sandwich plates under blast loading is studied through theoretical analysis and finite element (FE) calculation. The membrane mode solution is obtained for the dynamic response of the clamped FML double-layer sandwich plate under blast loading, and the so-called ‘bounds’ are obtained through circumscribing and inscribing lines of the exact yield locus. The FE model is established, and the analytical model is proved by the FE method. The influences of geometrical parameters and material properties on the dynamic response of FML double-layer sandwich plates are researched based on the analytical model. Finally, it is found that FML double-layer sandwich plates have better anti-explosion performance with equal mass by comparing with the metal sandwich plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu JL, Liu JY, Mei J et al (2018) Investigation on manufacturing and mechanical behavior of all composite sandwich structure with Y-shaped cores. Compos Sci Technol 159:87–102

    Google Scholar 

  2. Mahdi KM, Vahid B (2016) Bending and buckling analysis of corrugated composite sandwich plates. J Braz Soc Mech Sci 38(8):2571–2588

    Google Scholar 

  3. Tao Y, Li WG, Cheng TB et al (2021) Out-of-plane dynamic crushing behavior of joint-based hierarchical honeycombs. J Sandwich Struct Mater 23(7):2832–2855

    Google Scholar 

  4. Zhang JX, Qin QH, Ai WL et al (2016) Indentation of metal foam core sandwich beams: experimental and theoretical investigations. Exp Mech 56:771–784

    Google Scholar 

  5. Wang ZG, Deng JJ, Liu K et al (2022) Hybrid hierarchical square honeycomb with widely tailorable effective in-plane elastic modulus. Thin Wall Struct 171:108816

    Google Scholar 

  6. Zhang Y, Li YG, Guo KL et al (2021) Dynamic mechanical behaviour and energy absorption of aluminium honeycomb sandwich panels under repeated impact loads. Ocean Eng 219:108344

    Google Scholar 

  7. Yang JS, Xiong J, Ma L et al (2013) Vibration and damping characteristics of hybrid carbon fiber composite pyramidal truss sandwich panels with viscoelastic layers. Compos Struct 106:570–580

    Google Scholar 

  8. Peng Y, Wei K, Mei M et al (2021) Simultaneously program thermal expansion and Poisson’s ratio in three dimensional mechanical metamaterial. Compos Struct 262:113365

    Google Scholar 

  9. Cai SP, Zhang P, Dai WX et al (2019) Multi-objective optimization for designing metallic corrugated core sandwich panels under air blast loading. J Sandw Struct Mater 23:1192–1220

    Google Scholar 

  10. Sun Z, Chen HJ, Song ZW et al (2021) Three-point bending properties of carbon fiber/honeycomb sandwich panels with short-fiber tissue and carbon-fiber belt interfacial toughening at different loading rate. Compos A 143:106289

    Google Scholar 

  11. Zhang JX, Wu XW, Sun H et al (2022) Plastic behaviour of foam-filled X-shaped core sandwich beam. J Braz Soc Mech Sci 44:355

    Google Scholar 

  12. Chen XJ, Yu GC, Wang ZX et al (2021) Enhancing out-of-plane compressive performance of carbon fiber composite honeycombs. Compos Struct 255:112984

    Google Scholar 

  13. Zhang JX, Ye Y, Qin QH et al (2018) Low-velocity impact of sandwich beams with fibre-metal laminate face-sheets. Compos Sci Technol 168:152–159

    Google Scholar 

  14. Xiong J, Vaziri A, Ma L et al (2012) Compression and impact testing of two-layer composite pyramidal-core sandwich panels. Compos Struct 94:793–801

    Google Scholar 

  15. Sinmazçelik T, Avcu E, Bora MÖ et al (2011) A review: fibre metal laminates, background, bonding types and applied test methods. Mater Des 32:3671–3685

    Google Scholar 

  16. Dharmasena K, Queheillalt D, Wadley H et al (2009) Dynamic response of a multilayer prismatic structure to impulsive loads incident from water. Int J Impact Eng 36:632–643

    Google Scholar 

  17. Fan HL, Zhou Q, Yang W et al (2011) Experimental research of compressive responses of multilayered woven textile sandwich panels under quasi-static loading. Compos B 41(8):686–692

    Google Scholar 

  18. Fleck NA, Deshpande VS (2004) The resistance of clamped sandwich beams to shock loading. ASME J Appl Mech 71:386–401

    MATH  Google Scholar 

  19. Qiu X, Deshpande VS (2004) Fleck NA (2004) Dynamic response of a clamped circular sandwich plate subject to shock loading. ASME J Appl Mech 71(5):637–645

    MATH  Google Scholar 

  20. Qin QH, Wang TJ (2009) A theoretical analysis of the dynamic response of metallic sandwich beam under impulsive loading. Eur J Mech A/Solids 28:1014–1025

    MATH  Google Scholar 

  21. Zhang JX, Qin QH, Wang TJ (2013) Compressive strengths and dynamic response of corrugated metal sandwich plates with unfilled and foam-filled sinusoidal plate cores. Acta Mech 224:759–775

    MATH  Google Scholar 

  22. Cui X, Zhao L, Wang Z et al (2012) A lattice deformation based model of metallic lattice sandwich plates subjected to impulsive loading. Int J Solids Struct 49(19–20):2854–2862

    Google Scholar 

  23. Feng Z, Wang Z, Lu G et al (2010) Some theoretical considerations on the dynamic response of sandwich structures under impulsive loading. Int J Impact Eng 37(6):625–637

    Google Scholar 

  24. Qin QH, Yuan C, Zhang JX et al (2014) Large deflection response of rectangular metal sandwich plates subjected to blast loading. Eur J Mech A/Solids 47:14–22

    Google Scholar 

  25. Zhu F, Wang ZH, Lu GX et al (2009) Analytical investigation and optimal design of sandwich panels subjected to shock loading. Mater Des 30:91–100

    Google Scholar 

  26. Zhu F, Zhao LM, Lu GX et al (2008) Structural response and energy absorption of sandwich panels with an aluminium foam core under blast loading. Adv Struct Eng 11(5):525–536

    Google Scholar 

  27. Rezasefat M, Mostofi TM, Ozbakkaloglu T (2019) Repeated localized impulsive loading on monolithic and multi-layered metallic plates. Thin Wall Struct 144:106332

    Google Scholar 

  28. Mostofi TM, Babaei H, Alitavoli M et al (2019) Large transverse deformation of double-layered rectangular plates subjected to gas mixture detonation load. Int J Impact Eng 125:93–106

    Google Scholar 

  29. Ziya-Shamami M, Babaei H, Mostofi TM et al (2020) Structural response of monolithic and multi-layered circular metallic plates under repeated uniformly distributed impulsive loading: an experimental study. Thin-Wall Struct 157:107024

    Google Scholar 

  30. Zhang JX, Zhou RF, Wang MS et al (2018) Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading. Int J Impact Eng 122:265–275

    Google Scholar 

  31. Cai S, Liu J, Zhang P et al (2019) Dynamic response of sandwich panels with multi-layered aluminum foam/UHMWPE laminate cores under air blast loading. Int J Impact Eng 138:103475

    Google Scholar 

  32. Liang MZ, Li XY, Lin YL et al (2020) Influence of multi-layer core on the blast response of composite sandwich cylinders. Int J Appl Mech 12(2):2050018

    Google Scholar 

  33. Wang ZQ, Zhou YB, Wang XH et al (2017) Multi-objective optimization design of a multi-layer honeycomb sandwich structure under blast loading. Proc Inst Mech Eng D 231(10):1449–1458

    Google Scholar 

  34. Cui J, Ye RC, Zhao N et al (2019) Assessment on energy absorption of double layered and sandwich plates under ballistic impact. Thin Wall Struct 130:520–534

    Google Scholar 

  35. Selvaraj R, Subramani M, More G et al (2021) Dynamic responses of laminated composite sandwich beam with double-viscoelastic core layers. Mater Today Proc 46:7468–7472

    Google Scholar 

  36. Zhu YF, Sun YG (2021) Low-velocity impact response of multilayer foam core sandwich panels with composite face sheets. Int J Mech Sci 209:106704

    Google Scholar 

  37. AL-Shamary AKJ, Karakuzu R, Ozdemir O, et al (2016) Low-velocity impact response of sandwich composites with different foam core configurations. J Sandwich Struct Mater 18(6):754–768

    Google Scholar 

  38. Zhang JX, Ye Y, Qin QH (2019) On dynamic response of rectangular sandwich plates with fibre-metal laminate face-sheets under blast loading. Thin Wall Struct 144:106288

    Google Scholar 

  39. Ma XM, Li X, Li SQ et al (2018) Blast response of gradient honeycomb sandwich panels with basalt fiber metal laminates as skins. Int J Impact Eng 123:126–139

    Google Scholar 

  40. Baştürk SB, Tanoğlu M, Çankaya MA et al (2016) Dynamic behavior predictions of fiber-metal laminate/aluminum foam sandwiches under various explosive weights. J Sandw Struct Mater 18:321–342

    Google Scholar 

  41. Zhang JX, Zhu YQ, Li KK et al (2022) Dynamic response of sandwich plates with GLARE face-sheets and honeycomb core under metal foam projectile impact: Experimental and numerical investigations. Int J Impact Eng 164:10420

    Google Scholar 

  42. Liu C, Zhang YX, Ye L (2017) High velocity impact responses of sandwich panels with metal fibre laminate skins and aluminium foam core. Int J Impact Eng 100:139–153

    Google Scholar 

  43. Reyes G (2010) Mechanical behavior of thermoplastic FML-reinforced sandwich panels using an aluminum foam core: experiments and modeling. J Sandwich Struct Mater 12:81–96

    Google Scholar 

  44. Liu C, Zhang YX, Li J (2017) Impact responses of sandwich panels with fibre metal laminate skins and aluminium foam core. Compos Struct 182:183–190

    Google Scholar 

  45. Jones N (2017) Note on the impact behaviour of fibre-metal laminates. Int J Impact Eng 108:147–152

    Google Scholar 

  46. Jones N (1989) Structural impact. Cambridge University, Cambridge

    Google Scholar 

  47. Jones N (1971) A theoretical study of the dynamic plastic behavior of beams and plates with finite-deflections. Int J Solids Struct 7:1007–1029

    MATH  Google Scholar 

  48. Qiu X, Deshpande VS, Fleck NA (2005) Impulsive loading of clamped monolithic and sandwich beams over a central patch. J Mech Phys Solids 53:1015–1046

    MATH  Google Scholar 

  49. Qin QH, Wang TJ (2007) Impulsive loading of a fully clamped circular metallic foam core sandwich plate.In: Proceedings of the 7th international conference on shock & impact loads on structures. pp 481–488.

  50. Cloete TJ, Nurick GN (2014) On the influence of radial displacements and bending strains on the large deflections of impulsively loaded circular plates. Int J Mech Sci 82:140–148

    Google Scholar 

  51. Mehreganian N, Louca L, Langdon G et al (2018) The response of mild steel and armour steel plates to localised air-blast loading-comparison of numerical modelling techniques. Int J Impact Eng 115:81–93

    Google Scholar 

  52. Barras G, Souli M, Aquelet N et al (2012) Numerical simulation of underwater explosions using an ALE method. The pulsating bubble phenomena, Ocean Eng 41:53–66

    Google Scholar 

  53. Henchie TF, Yuen SCK, Nurick G et al (2014) The response of circular plates to repeated uniform blast loads: An experimental and numerical study. Int J Impact Eng 74:36–45

    Google Scholar 

  54. Behtaj M, Babaei H, Mostofi TM (2022) Repeated uniform blast loading on welded mild steel rectangular plates. Thin Wall Struct 178:109523

    Google Scholar 

  55. Cerik BC (2017) Damage assessment of marine grade aluminium alloy-plated structures due to air blast and explosive loads. Thin Wall Struct 110:123–132

    Google Scholar 

  56. Park BE, Cho SR (2006) Simple design formulae for predicting the residual damage of unstiffened and stiffened plates under explosion loadings. Int J Impact Eng 32:1721–1736

    Google Scholar 

  57. Deshpande VS, Fleck NA (2000) Isotropic constitutive models for metallic foams. J Mech Physics Solids 48:1253–1283

    MATH  Google Scholar 

  58. Tagarielli VL, Fleck NA, Deshpande VS (2004) Collapse of clamped and simply supported composite sandwich beams in three-point bending. Compos B 35(6–8):523–534

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for their financial support through the Fund for the Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation (CDPM2021KF07) and NSFC (12272290 and 11872291), opening project of State Key Laboratory of Structural Analysis for Industrial Equipment, China (GZ22110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxun Zhang.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The inscribing coefficient of inscribing yield criterion

Appendix A: The inscribing coefficient of inscribing yield criterion

The inscribing coefficient of compressed double-layer metal sandwich section is given in Ref. [30], and the inscribing coefficient of compressed sandwich section with FML face-sheets \(\vartheta^{\prime}\) can be expressed as

$$\vartheta^{\prime} = \left\{ {\begin{array}{*{20}l} {\frac{{\sqrt {1 + 4k_{0} } - 1}}{{2k_{0} }},} \hfill & {J_{1} \ge 0} \hfill \\ {\frac{{\sqrt {k_{1}^{2} + 4k_{2} } + k_{1} }}{2},} \hfill & {J_{1} < 0{\text{ and }}J_{2} > 0} \hfill \\ {\frac{{\sqrt {k_{3}^{2} + 4k_{4} } - k_{3} }}{2},} \hfill & { \, J_{2} \le 0} \hfill \\ \end{array} } \right.$$
(A1)

where

$$k_{0} = \frac{{\left[ {2\overline{h} + \frac{1}{{f\overline{\sigma }_{1} + \left( {1 - f} \right)\overline{\sigma }_{2} }}} \right]^{2} }}{A},$$
$$k_{1} = \frac{{4\overline{h}\left( {1 - \frac{1}{{f\overline{\sigma }_{1} + \left( {1 - f} \right)\overline{\sigma }_{2} }} - \varepsilon_{c2} } \right)\left( {1 - \varepsilon_{c2} } \right)\left[ {2\overline{h} + \frac{1}{{f\overline{\sigma }_{1} + \left( {1 - f} \right)\overline{\sigma }_{2} }}} \right] - \frac{3A}{{f\overline{\sigma }_{1} + \left( {1 - f} \right)\overline{\sigma }_{2} }}\left( {1 - \varepsilon_{c2} } \right)}}{{3\left[ {2\overline{h} + \frac{1}{{f\overline{\sigma }_{1} + \left( {1 - f} \right)\overline{\sigma }_{2} }}} \right]^{2} \left( {1 - \varepsilon_{c2} } \right)^{2} }},$$
$$k_{2} = \frac{{9\left[ {C + \frac{{\left( {\frac{2}{3}\overline{h} + 1 - \varepsilon_{c2} } \right)^{2} }}{{f\overline{\sigma }_{1} + \left( {1 - f} \right)\overline{\sigma }_{2} }} + \frac{{\varepsilon_{c2} - \varepsilon_{c1} }}{{2f\overline{\sigma }_{1} + 2\left( {1 - f} \right)\overline{\sigma }_{2} }}} \right]\frac{{1 - \varepsilon_{c2} }}{{f\overline{\sigma }_{1} + \left( {1 - f} \right)\overline{\sigma }_{2} }} - 4\overline{h}^{2} \left[ {1 - \frac{1}{{f\overline{\sigma }_{1} + \left( {1 - f} \right)\overline{\sigma }_{2} }} - \varepsilon_{c2} } \right]^{2} }}{{9\left[ {2\overline{h} + \frac{1}{{f\overline{\sigma }_{1} + \left( {1 - f} \right)\overline{\sigma }_{2} }}} \right]^{2} \left( {1 - \varepsilon_{c2} } \right)^{2} }},$$
$$k_{3} = \frac{{2\left[ {2\overline{h} + \frac{1}{{f\overline{\sigma }_{1} + \left( {1 - f} \right)\overline{\sigma }_{2} }}} \right]\left( {1 - \frac{1}{{f\overline{\sigma }_{1} + \left( {1 - f} \right)\overline{\sigma }_{2} }} - \varepsilon_{c2} } \right) + A}}{{\left[ {2\overline{h} + \frac{1}{{f\overline{\sigma }_{1} + \left( {1 - f} \right)\overline{\sigma }_{2} }}} \right]^{2} }},$$
$$k_{4} = \frac{{2\overline{h} - \frac{1}{{f\overline{\sigma }_{1} + \left( {1 - f} \right)\overline{\sigma }_{2} }} + 2 - 2\varepsilon_{c2} }}{{2\overline{h} + \frac{1}{{f\overline{\sigma }_{1} + \left( {1 - f} \right)\overline{\sigma }_{2} }}}} + \frac{{\frac{4}{3}\overline{h}\left( {\varepsilon_{c2} - \varepsilon_{c1} } \right) + \frac{{\varepsilon_{c2} - \varepsilon_{c1} }}{{2f\overline{\sigma }_{1} + 2\left( {1 - f} \right)\overline{\sigma }_{2} }}}}{{\left[ {2\overline{h} + \frac{1}{{f\overline{\sigma }_{1} + \left( {1 - f} \right)\overline{\sigma }_{2} }}} \right]^{2} }},$$
$$J_{1} = \frac{{3\overline{h}}}{{2\overline{h} + \frac{1}{{f\overline{\sigma }_{1} + \left( {1 - f} \right)\overline{\sigma }_{2} }}}} + \frac{{2\overline{h}^{2} }}{3A} - 1,$$
$$J_{2} = \frac{{3\overline{h} + \frac{3}{{2f\overline{\sigma }_{1} + 2\left( {1 - f} \right)\overline{\sigma }_{2} }}}}{{2\overline{h} + \frac{1}{{f\overline{\sigma }_{1} + \left( {1 - f} \right)\overline{\sigma }_{2} }}}} - \frac{{16\overline{h}^{2} - 6\overline{h}\left( {2 - \varepsilon_{c2} - \varepsilon_{c1} } \right) + \frac{{9\left( {\varepsilon_{c2} - \varepsilon_{c1} } \right)}}{{4f\overline{\sigma }_{1} + 4\left( {1 - f} \right)\overline{\sigma }_{2} }}}}{3A},$$
$$A = 4\overline{h}^{2} + \frac{1}{{f\overline{\sigma }_{1} + \left( {1 - f} \right)\overline{\sigma }_{2} }} + \frac{{8\overline{h}}}{3}\left[ {1 + \frac{1}{{2f\overline{\sigma }_{13} + 2\left( {1 - f} \right)\overline{\sigma }_{2} }}} \right] - \frac{1}{2}\left( {\varepsilon_{c2} + \varepsilon_{c1} } \right) - \frac{{4\overline{h}\left( {\varepsilon_{c2} + \varepsilon_{c1} } \right)}}{3},$$
$$C = \frac{{4\overline{h}}}{3}\left( {\frac{{8\overline{h}}}{3} + 2 - \varepsilon_{c2} - \varepsilon_{c1} } \right).$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Su, H., Bai, J. et al. On dynamic response of double-layer rectangular sandwich plates with FML face-sheets and metal foam cores under blast loading. J Braz. Soc. Mech. Sci. Eng. 45, 31 (2023). https://doi.org/10.1007/s40430-022-03956-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03956-3

Keywords

Navigation