Skip to main content
Log in

The compound fault interaction analysis of the planet bearing system

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper aims to understand the bearing distributed–localized compound fault interaction in planetary bearing system. To reveal the compound faults coupling mechanism, the planetary gear bearing distributed–localized fault mathematical models were proposed to obtain the dynamic response in the presence of various planet bearing distributed–localized compound fault combinations. The instantaneous angular speed (IAS) measured from the carrier arm has been pre-processed with the consideration of different distributed–localized fault interactions and treated as inputs for the coherence estimation analysis, which has been used as a tool for the individual fault contribution quantification. Six representative bearing compound fault cases have been selected and the results show that the existence of the bearing compound faults interaction phenomenon can weaken the localized fault characteristic frequencies for the bearing fault diagnosis. However, the localized fault still contributes more than the distributed fault on the same bearing component on the condition that the fault magnitude is the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

δ ibj :

Bearing overall contact deformation

x ibs :

Inner raceway displacement in the x direction

x ibp :

Outer raceway displacement in the x direction

y ibs :

Inner raceway displacement in the y direction

y ibp :

Outer raceway displacement in the y direction

Φ ibj :

Angular position

k b :

Bearing contact stiffness

γ ibj :

Contact state

β j :

Localized fault switch

C d :

Localized spall depth

N i :

Inner race waviness number

N o :

Outer race waviness number

N b :

Rolling ball waviness number

\({\Pi }_{p}\) :

Waviness magnitude

x :

Input signal

y :

Output signal

References

  1. Boštjan D, Boškoski P, Juričić Đ (2016) Distributed bearing fault diagnosis based on vibration analysis. Mech Syst Signal Process 66:521–532

    Google Scholar 

  2. Harris TA (2001) Rolling bearing analysis, 4th Ed., Wiley

  3. Karolina K et al (2022) Fault detecting accuracy of mechanical damages in rolling bearings. Machines 10(2):86

    Article  Google Scholar 

  4. Su YT, Lin MH, Lee MS (1993) The effects of surface irregularities on roller bearing vibrations. J Sound Vib 165(3):455–466

    Article  Google Scholar 

  5. Jiang Y, Huang W, Luo J et al (2019) An improved dynamic model of defective bearings considering the three-dimensional geometric relationship between the rolling element and defect area. Mech Syst Signal Process 129:694–716

    Article  Google Scholar 

  6. Cao H, Niu L, Xi S, Chen X (2018) Mechanical model development of rolling bearing-rotor systems: a review. Mech Syst Signal Process 102:37–58

    Article  Google Scholar 

  7. Singh S, Howard CQ, Hansen CH (2015) An extensive review of vibration modelling of rolling element bearings with localized and extended defects. J Sound Vib 357:300–330

    Article  Google Scholar 

  8. Lundberg OE, Finnveden S, Björklund S et al (2015) A nonlinear state-dependent model for vibrations excited by roughness in rolling contacts. J Sound Vib 345:197–213

    Article  Google Scholar 

  9. Sassi S, Badri B, Thomas M (2007) A numerical model to predict damaged bearing vibrations. J Vib Control 13(11):1603–1628

    Article  MATH  Google Scholar 

  10. Ashtekar A, Sadeghi F, Stacke LE (2008) A new approach to modelling surface defects in bearing dynamics simulations. J Tribol 130(4):041103

    Article  Google Scholar 

  11. Xue S, Howard I, Wang C (2019) The diagnostic analysis of the planet bearing faults using the torsional vibration signal. Mech Syst Signal Process 134:106304

    Article  Google Scholar 

  12. Sawalhi N, Randall RB (2008) Simulation gear and bearing interactions in the presence of faults-Part I: the combined gear bearing dynamic model and the simulation of localized bearing faults. Mech Syst Signal Process 22(8):1924–1951

    Article  Google Scholar 

  13. Wardle FP (1988) Vibration force produced by waviness of the rolling surface of thrust loaded ball bearing, Part 1: theory. Proc Inst Mech Eng 202(C5):305–312

    Google Scholar 

  14. Aktürk N, Uneeb M, Gohar R (1997) The effect of number of balls and preload on vibrations associated with ball bearings. ASME J Tribol 119(4):747–753

    Article  Google Scholar 

  15. Choudhury A, Tandon N (1998) A theoretical model to predict vibration response of rolling bearings to distributed defects under radial load. ASME J Vib Acoust 120(1):214–220

    Article  Google Scholar 

  16. Cao H, Su S, Jing X, Li D (2020) Vibration mechanism analysis for cylindrical roller bearings with single/multi defects and compound faults. Mech Syst Signal Process 144:106903

    Article  Google Scholar 

  17. Jacopo CCM, Riccardo R, Marco C (2018) Experimental evidence of the speed variation effect on svm accuracy for diagnostics of ball bearings. Machines 6(4):48

    Article  Google Scholar 

  18. Zhang X, Chen G, Hao T et al (2020) Rolling bearing fault convolutional neural network diagnosis method based on casing signal. J Mech Sci Technol 34:2307–2316

    Article  Google Scholar 

  19. Xue S, Wang C, Howard I (2020) The diagnostic analysis of the fault coupling effects in planet bearing. Eng Fail Anal 108:104266

    Article  Google Scholar 

  20. Wang PF, Xu HY, Ma H, Han HZ, Yang Y (2022) Effects of three types of bearing misalignments on dynamic characteristics of planetary gear set-rotor system. Mech Syst Signal Process 169:108736

    Article  Google Scholar 

  21. Ye ZH, Wang LQ, Gu L, Zhang CW (2013) Effect of tilted misalignment on loading characteristics of cylindrical roller bearings. Mech Mach Theory 69:153–167

    Article  Google Scholar 

  22. Liu J, Shi ZF, Shao YM (2017) A numerical investigation of the plastic deformation at the spall edge for a roller bearing. Eng Fail Anal 80:263–271

    Article  Google Scholar 

  23. Schnabel S, Marklund P, Larsson R, Golling S (2017) The detection of plastic deformation in rolling element bearings by acoustic emission. Tribol Int 110:209–215

    Article  Google Scholar 

  24. Xue S, Howard IM (2018) Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection. Mech Syst Signal Process 100:706–728

    Article  Google Scholar 

  25. Petre S and Moses RL (2005) Spectral analysis of signals. Upper Saddle River, NJ: Prentice Hall.

  26. Yang Y, Yang W, Jiang D (2018) Simulation and experimental analysis of rolling element bearing fault in rotor-bearing-casing system. Eng Fail Anal 92:205–221

    Article  Google Scholar 

  27. Kahraman A (1994) Natural modes of planetary gear trains. J Sound Vib 173(1):125–130

    Article  Google Scholar 

  28. Wang J, Liang Y, Zheng Y et al (2020) An integrated fault diagnosis and prognosis approach for predictive maintenance of wind turbine bearing with limited samples. Renew Energy 145:642–650

    Article  Google Scholar 

  29. Fu C, Sinou JJ, Zhu WD, Lu K, Yang YF (2022) A state of the art review on uncertainty analysis of rotor systems. Mech Syst Signal Process 183:109619

    Article  Google Scholar 

  30. Harris TA, Kotzalas MN (2007) Essential concepts of bearing technology, Taylor & Francis.

  31. Randall RB, Antoni J (2011) Rolling element bearing diagnostics- a tutorial. Mech Syst Signal Process 25:485–520

    Article  Google Scholar 

  32. Chegini SN, Bagheri A, Najafi F (2019) Application of a new EWT-based denoising technique in bearing fault diagnosis. Measurement 144:275–297

    Article  Google Scholar 

  33. Liu Z, Zhang L, Carrasco J (2020) Vibration analysis for large-scale wind turbine blade bearing fault detection with an empirical wavelet thresholding method. Renew Energy 146:99–110

    Article  Google Scholar 

  34. Li G, Tang G, Wang H, Wang Y (2019) Blind source separation of composite bearing vibration signals with low-rank and sparse decomposition. Measurement 145:323–334

    Article  Google Scholar 

  35. Hoang DT, Kang HJ (2019) A survey on deep learning-based bearing fault diagnosis. Neurocomputing 335:327–335

    Article  Google Scholar 

  36. Gunerkar RS, Jalan AK, Belgamwar SU (2019) Fault diagnosis of rolling element bearing based on artificial neural network. J Mech Sci Technol 33:505–511

    Article  Google Scholar 

  37. Yuan X, Zhu YS, Zhang YY (2014) Multi-body vibration modelling of ball bearing rotor system considering single and compound multi-defects. Procee Inst Mech Eng, Part K: J Multi-body Dyn 228(2):199–212

    Google Scholar 

  38. Mogal P and Palhe SN (2019) Experimental investigations of multiple faults in ball bearing. In: Advances in Engineering Design, Springer, Singapore

  39. Zhao M, Lin J, Xu XQ, Li XJ (2014) Multi-fault detection of rolling element bearings under harsh work condition using IMF-Based adaptive envelope order analysis. Sensor 14:20320–20346

    Article  Google Scholar 

  40. Li YJ, Miao BG, Zhang WH, Chen P, Liu JH, Jiang XL (2019) Inspection of refined composite multiscale fuzzy entropy: application to detect localized defect of rolling element bearing. J Mech Sci Technol 33(1):1–12

    Article  Google Scholar 

  41. Yu MY, Fang MH (2022) Feature extraction of rolling bearing multiple faults based on correlation coefficient and Hjorth parameter. ISA Trans 129(Part B):442–458

    Article  Google Scholar 

  42. Zhao M, Jia X, Lin J, Lei Y, Lee J (2018) Instantaneous speed jitter detection via encoder signal and its application for the diagnosis of planetary gearbox. Mech Syst Signal Process 98:16–31

    Article  Google Scholar 

  43. Fan Z, Li H (2015) A hybrid approach for fault diagnosis of planetary bearings using an internal vibration sensor. Measurement 64:71–80

    Article  Google Scholar 

  44. Renaudin L, Bonnardot F, Musy O, Doray JB, Rémond D (2010) Natural roller bearing fault detection by angular measurement of true instantaneous angular speed. Mech Syst Signal Process 24:1998–2011

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under (52005377), National Key Research and Development Program of China under No. 2021YFC2203600, Natural Science Foundation of Shaanxi Province under (2020JQ290), Fundamental Research Funds for the Central Universities (JB210403, JB210404), Open Fund of Shaanxi Key Laboratory of Antenna and Control Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congsi Wang.

Additional information

Technical Editor: Jarir Mahfoud.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Planet bearing characteristic frequency for individual distributed fault and localized fault can be summarized here.

The planet bearing localized fault characteristic frequencies are:

The characteristic frequency of the outer race fault can be calculated as,

$$f_{bpfo}^{c} = \frac{{n_{b} }}{2}\left( {1 - \frac{{D_{b} }}{{D_{p} }}\cos \alpha } \right)f_{o}^{c}$$
(A1)

The characteristic frequency of the inner race fault can be calculated as,

$$f_{bpfi}^{c} = \frac{{n_{b} }}{2}\left( {1 + \frac{{D_{b} }}{{D_{p} }}\cos \alpha } \right)f_{o}^{c}$$
(A2)

The characteristic frequency of the rolling element fault can be calculated as,

$$f_{bf}^{c} = 2f_{b}^{c} = \frac{{D_{p} }}{{D_{b} }}\left[ {1 - \left( {\frac{{D_{b} }}{{D_{p} }}\cos \alpha } \right)^{2} } \right]f_{o}^{c}$$
(A3)

The frequency fc is the carrier arm absolute rotating frequency and the planet gear absolute rotating frequency is,

$$f_{p} = 1 + \frac{{z_{r} }}{{z_{p} }}f_{c}$$
(A4)

The inner race absolute rotating frequency and the outer race absolute rotating frequency are,

$$\begin{gathered} f_{i} = f_{c} \hfill \\ f_{o} = f_{p} \hfill \\ \end{gathered}$$
(A5)

The outer race relative rotating frequency becomes,

$$f_{o}^{c} = f_{p} - f_{c}$$
(A6)

The rolling element cage rotating frequency becomes,

$$f_{bcg}^{c} = \frac{1}{2}\left( {1 + \frac{{D_{b} }}{{D_{p} }}\cos \alpha } \right)f_{o}^{c}$$
(A7)

The rolling element rotating frequency becomes,

$$f_{b}^{c} = \frac{{D_{p} }}{{2D_{b} }}\left[ {1 - \left( {\frac{{D_{b} }}{{D_{p} }}\cos \alpha } \right)^{2} } \right]f_{o}^{c}$$
(A8)

where Db is the diameter of a rolling element, Dp is the bearing pitch diameter, α is the contact angle.

The planet bearing distributed fault characteristic frequencies are:

For the inner raceway distributed fault, the resultant vibration peaks can be found in the positions of \(k{N}_{b}{f}_{cg}^{c} \left(k=\mathrm{1,2},3,\dots \right)\) regardless of the inner raceway fault orders.

For the outer raceway distributed fault, the resultant vibration peaks were found to be centered around the frequency of \(k{N}_{b}\left({f}_{oc}-{f}_{cg}^{c} \right) \left(k=\mathrm{1,2},3,\dots \right)\), which was further modulated by the frequency of \({f}_{cg}^{c}\) or \({f}_{o}\).

For the rolling ball distributed fault, the resultant vibration peaks were found to be centered around the frequency of \(2k{f}_{bc}^{c} \left(k=\mathrm{1,2},3,\dots \right)\), which was modulated by the frequency of \({f}_{cg}^{c}\).

Appendix B

For the rotary motion of the motor, the motion equation is,

$$I_{{\text{m}}} \ddot{\theta } = T_{in} - T_{s}$$
$$T_{{\text{s}}} = k_{cp} \left( {\theta_{m} - \theta_{s} } \right) + q_{cp} \left( {\dot{\theta }_{m} - \dot{\theta }_{s} } \right)$$
(B1)

For the motion of the sun gear, the differential equation is,

$$\begin{gathered} {\text{m}}_{s} \ddot{x}_{s} + \sum\limits_{i = 1}^{3} {\left[ {F_{spi} \cos \left( {\varphi_{spi} } \right)} \right]} + k_{sx} x_{s} + q_{sx} \dot{x}_{s} { = } {\text{ m}}_{s} x_{s} \Omega^{2} + 2m_{s} \dot{y}_{s} \Omega + m_{s} y_{s} \dot{\Omega } \hfill \\ \end{gathered}$$
$$\begin{gathered} {\text{m}}_{s} \ddot{y}_{s} + \sum\limits_{i = 1}^{3} {\left[ {F_{spi} \sin \left( {\varphi_{spi} } \right)} \right]} + k_{sx} y_{s} + q_{sx} \dot{y}_{s} { = } {\text{ m}}_{s} {\text{y}}_{s} \Omega^{2} + 2m_{s} \dot{x}_{s} \Omega + m_{s} x_{s} \dot{\Omega } \hfill \\ \end{gathered}$$
$$\left( {\frac{{I_{s} }}{{r_{s} }}} \right)\ddot{\theta }_{s} + \sum\limits_{i = 1}^{3} {F_{spi} = \frac{{T_{s} }}{{r_{s} }}}$$
(B2)

where Fspi is the normal contact force between the sun gear and the ith planet,

$$F_{{{\text{spi}}}} = k_{spi} \delta_{spi} + q_{spi} \dot{\delta }_{spi}$$
$$\begin{gathered} \delta_{{{\text{spi}}}} = \left( {x_{s} - x_{pi} } \right)\cos \varphi_{spi} + r_{s} \theta_{s} + r_{p} \theta_{pi} \ { + }\left( {y_{s} - y_{pi} } \right)\sin \varphi_{spi} - r_{c} \theta_{c} \cos \alpha_{sp} \hfill \\ \end{gathered}$$
$$\varphi_{{{\text{spi}}}} = \frac{\pi }{2} - \alpha_{sp} + \varphi_{i}$$
$$\varphi_{{\text{i}}} = \frac{{2\pi \left( {i - 1} \right)}}{3};i = 1,2,3.$$
(B3)

For the motion of the planet gears, the x and y components become,

$$\begin{gathered} {\text{m}}_{pi} \ddot{x}_{pi} - k_{bp} \left( {x_{bp} - x_{p} } \right) - c_{bp} \left( {\dot{x}_{bp} - \dot{x}_{p} } \right){ + }F_{{{\text{spi}}}} \cos \varphi_{spi} + F_{rpi} \cos \varphi_{rpi} \hfill \\ \,\quad\quad\quad = m_{pi} x_{pi} \Omega^{2} { + }2{\text{m}}_{pi} \dot{y}_{pi} \Omega + m_{pi} y_{pi} \dot{\Omega } + m_{pi} r_{c} \Omega^{2} \cos \varphi_{i} \hfill \\ \end{gathered}$$
$$\begin{gathered} {\text{m}}_{pi} \ddot{y}_{pi} - k_{kb} \left( {y_{bp} - y_{p} } \right) - c_{bp} \left( {\dot{y}_{bp} - \dot{y}_{p} } \right) - F_{{{\text{spi}}}} \sin \varphi_{spi} - F_{rpi} \sin \varphi_{rpi} \hfill \\ \,\quad\quad\quad = m_{pi} y_{pi} \Omega^{2} { - }2{\text{m}}_{pi} \dot{x}_{pi} \Omega - m_{pi} x_{pi} \dot{\Omega } + m_{pi} r_{c} \Omega^{2} \sin \varphi_{i} \hfill \\ \end{gathered}$$
$$\left( {\frac{{I_{pi} }}{{r_{p} }}} \right)\ddot{\theta }_{pi} + F_{spi} - F_{rpi} = 0$$
(B4)

where Frpi is the normal contact force between the ring gear and the ith planet,

$$F_{{{\text{rpi}}}} = k_{rpi} \delta_{rpi} + q_{rpi} \dot{\delta }_{rpi}$$
$$\begin{gathered} \delta_{{{\text{rpi}}}} = \left( {x_{r} - x_{pi} } \right)\cos \varphi_{rpi} + r_{r} \theta_{r} - r_{p} \theta_{pi} { + }\left( {y_{r} - y_{pi} } \right)\sin \varphi_{rpi} - r_{c} \theta_{c} \cos \alpha_{rp} \hfill \\ \end{gathered}$$
$$\varphi_{{{\text{rpi}}}} = \frac{\pi }{2} + \alpha_{rp} + \varphi_{i}$$
(B5)

For the motion of the ith planet gear bearing, the inner race can be modelled as a two degree of freedom system that has translational motion in x and y directions. The equation of motion of the inner race can be written as,

$$\begin{gathered} {\text{m}}_{ibs} \ddot{x}_{ibs} + F_{cpix} - f_{ibx} \hfill \\ =\, m_{ibs} x_{ibs} \Omega^{2} + 2m_{ibs} \dot{y}_{ibs} \Omega + m_{ibs} y_{ibs} \dot{\Omega } + m_{ibs} r_{c} \Omega^{2} \cos \varphi_{i} \hfill \\ \end{gathered}$$
$$\begin{gathered} {\text{m}}_{ibs} \ddot{y}_{ibs} + F_{cpiy} - f_{iby} \hfill \\ = \, m_{ibs} y_{ibs} \Omega^{2} - 2m_{ibs} \dot{x}_{ibs} \Omega + m_{ibs} x_{ibs} \dot{\Omega } + m_{ibs} r_{c} \Omega^{2} \sin \varphi_{i} \hfill \\ \end{gathered}$$
(B6)

The outer race is modelled as a two degree of freedom system that has translational motion in the x and y directions. The equation of motion of the outer race can be written as,

$$\begin{gathered} m_{ibp} \ddot{x}_{ibp} + k_{bp} \left( {x_{bp} - x_{p} } \right) + c_{bp} \left( {\dot{x}_{bp} - \dot{x}_{p} } \right) + f_{ibx} \hfill \\\quad\quad\quad = \, m_{ibp} x_{ibp} \Omega^{2} + 2m_{ibp} \dot{y}_{ibp} \Omega + m_{ibp} y_{ibp} \dot{\Omega } + m_{ibp} r_{c} \Omega^{2} \cos \varphi_{i} \hfill \\ \end{gathered}$$
$$\begin{gathered} m_{ibs} \ddot{y}_{ibp} + k_{bp} (y_{bp} - y_{p} ) + c_{bp} (\dot{y}_{bp} - \dot{y}_{p} ) = \, m_{ibp} y_{ibp} \Omega^{2} - 2m_{ibp} \dot{x}_{ibp} \Omega \,- m_{ibp} x_{ibp} \dot{\Omega } + m_{ibp} r_{c} \Omega^{2} \sin \varphi_{i} \hfill \\ \end{gathered}$$
(B7)

The sprung mass is attached in the y direction. Its equation of motion can be written as,

$$m_{ibr} \ddot{y}_{ibs} - k_{br} \left( {y_{bp} - y_{br} } \right) - c_{br} \left( {\dot{y}_{br} - \dot{y}_{br} } \right) = 0$$
(B8)

where Fcpix and Fcpiy describe the interaction force between the ith planet bearing and the carrier arm in the x and y directions,

$$F_{{{\text{cpix}}}} = k_{ibs} \left( {x_{ibs} - x_{c} } \right) + q_{ibs} \left( {\dot{x}_{ibs} - \dot{x}_{c} } \right)$$
$$F_{{{\text{cpiy}}}} = k_{ibs} \left( {y_{ibs} - y_{c} } \right) + q_{ibs} \left( {\dot{y}_{ibs} - \dot{y}_{c} } \right)$$
(B9)

fibx, fiby describe the summation of the contact forces in the x- and x- directions for a ball bearing with nb balls and can be calculated as,

$$f_{ibx} = k_{b} \sum\limits_{j = 1}^{{n_{b} }} {\gamma_{ibj} \delta_{ibj}^{1.5} } \cos \phi_{ibj}$$
$$f_{{ib{\text{y}}}} = k_{b} \sum\limits_{j = 1}^{{n_{b} }} {\gamma_{ibj} \delta_{ibj}^{1.5} } \sin \phi_{ibj}$$
(B10)

where kb is the combined contact stiffness between the rolling element and the races and γibj is the contact state. δibj and Φibj are the overall contact deformation as well as the angular position for the jth rolling element on the ith planet gear bearing, respectively, and they can be described as,

$$\delta_{{{\text{ibj}}}} { = }\left( {x_{ibs} - x_{ibp} } \right)\cos \phi_{ibj} - c + (y_{ibs} - y_{ibp} )\sin \phi_{ibj} {\text{ + w}}^{i}$$
$$j = 1,2,3,...,n_{b}$$
$$\phi_{ibj} = \frac{{2\pi \left( {j - 1} \right)}}{{n_{b} }} + w_{ibc}^{c} dt + \phi_{ibo}$$
(B11)

\({\Phi }_{\mathrm{ibo}}\) is the initial cage position and \({\upomega }_{\mathrm{ibc}}^{\mathrm{c}}\) is the cage speed measured in the rotating frame, which can be calculated as,

$$w_{ibc} = w_{ibc}^{c} = \frac{{w_{ii} }}{2}\left( {1 - \frac{{D_{b} }}{{D_{p} }}\cos \alpha } \right) + \frac{{w_{io} }}{2}\left( {1 + \frac{{D_{b} }}{{D_{p} }}\cos \alpha } \right) - w_{c}$$
(B12)

For the motion of the carrier arm, the motion equation is,

$$m_{c} \ddot{x}_{c} + k_{cx} x_{c} + q_{cx} \dot{x}_{c} - \sum\limits_{i = 1}^{3} {F_{cpix} } = m_{c} x_{c} \Omega^{2} + 2m_{c} \dot{y}_{c} \Omega + m_{c} y_{c} \dot{\Omega }$$
$$m_{c} \ddot{y}_{c} + k_{cy} y_{c} + q_{cy} \dot{y}_{c} - \sum\limits_{i = 1}^{3} {F_{cpiy} } = m_{c} y_{c} \Omega^{2} - 2m_{c} \dot{x}_{c} \Omega - m_{c} x_{c} \dot{\Omega }$$
$$\left( {\frac{{I_{c} }}{{r_{c} }}} \right)\ddot{\theta }_{c} + \sum\limits_{i = 1}^{3} {F_{cpix} } \sin \varphi_{i} - \sum\limits_{i = 1}^{3} {F_{cpiy} } \cos \varphi_{i} = \frac{{T_{c} }}{{r_{c} }}$$
(B13)
$$T_{c} = k_{cg} \left( {\theta_{c} - \theta_{out} } \right) + q_{cg} \left( {\dot{\theta }_{c} - \dot{\theta }_{out} } \right)$$

For the motion of the ring gear, the motion equation is,

$$\begin{gathered} m_{r} \ddot{x}_{r} + k_{rx} x_{r} + q_{rx} \dot{x}_{r} + \sum\limits_{i = 1}^{3} {F_{rpi} \cos \varphi_{rpi} } = \, m_{r} x_{r} \Omega^{2} + 2m_{r} \dot{y}_{r} \Omega + m_{r} y_{r} \dot{\Omega } \hfill \\ \end{gathered}$$
$$\begin{gathered} m_{r} \ddot{y}_{r} + k_{ry} y_{r} + q_{ry} \dot{y}_{r} + \sum\limits_{i = 1}^{3} {F_{rpi} \sin \varphi_{rpi} } = \, m_{r} y_{r} \Omega^{2} - 2m_{r} \dot{x}_{r} \Omega - m_{r} x_{r} \dot{\Omega } \hfill \\ \end{gathered}$$
$$\left( {\frac{{I_{r} }}{{r_{r} }}} \right)\ddot{\theta }{}_{r} + \left( {\frac{{q_{rt} }}{{r_{r} }}} \right)\dot{\theta }_{r} + \left( {\frac{{k_{rt} }}{{r_{r} }}} \right)\theta_{r} + \sum\limits_{i = 1}^{3} {F_{rpi} = 0}$$
(B14)

For the rotary motion of the load, the motion equation is,

$$I_{out} \ddot{\theta }_{out} = - T_{out} + T_{c}$$
(B15)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, S., Jin, Z., Wang, C. et al. The compound fault interaction analysis of the planet bearing system. J Braz. Soc. Mech. Sci. Eng. 44, 606 (2022). https://doi.org/10.1007/s40430-022-03892-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03892-2

Keywords

Navigation