Skip to main content

Advertisement

Log in

Design optimization of modified re-entrant auxetic metamaterials reinforced with asymmetric edge cells for crushing behavior using the Taguchi method

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This work describes the compressive failure behavior and optimization of modified hierarchical re-entrant auxetic metamaterials reinforced with asymmetrical edge cells. The mechanical behavior of these metamaterials is parametrized against the width, thickness and angles of the cells. A Taguchi design (L27 (3^13)) has been performed to determine the effect of the eight geometric factors on the maximum compressive strength (specific strength), mean crushing force (MCF), specific energy absorption (SEA) and Poisson’s ratio of the metamaterials. An analysis of variance (ANOVA) has been also performed to find out the relative significance and contribution percentage of each parameter from a statistical standpoint. The results show that the cell wall angle between the lateral and inclined ribs of the re-entrant unit cells has the largest effect on the compressive strength and absorbed energy of the structure that exhibits a percent variation of 82.5%, 30.0%, 85.9% and 75.1% in specific strength, MCF, SEA and Poisson’s ratio, respectively. Moreover, the size of slot width and thickness, especially in the inclined struts, have a considerable effect on the mechanical performance compared to the angle of asymmetrical cells. Lastly, two samples from the optimization design table showing the best and worst mechanical responses are manufactured by using 3D printing and are tested under compression loading. The effects of the design factors on the deformation mechanisms and mechanical responses have been discussed by comparing the experimental and FE simulation results. The results show that the deformation mechanism of the asymmetrical unit cells and inclined struts play a key role in the resistance of the structures under compressive loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hu LL, Deng H (2015) Indentation resistance of the re-entrant hexagonal honeycombs with negative poisson’s ratio. Mater Res Innovations 19(sup1):442–445. https://doi.org/10.1179/1432891715Z.0000000001588

    Article  Google Scholar 

  2. Lira C, Scarpa F (2010) Transverse shear stiffness of thickness gradient honeycombs. Compos Sci Technol 70(6):930–936. https://doi.org/10.1016/j.compscitech.2010.02.007

    Article  Google Scholar 

  3. Alderson K, Alderson A, Anand S, Simkins V, Nazare S, Ravirala N (2012) Auxetic warp knit textile structures. Physica Status Solidi (b) 249(7):1322–1329. https://doi.org/10.1002/pssb.201084216

    Article  Google Scholar 

  4. Wang Y, He Q, Chen Y, Gu H, Zhou H (2021) In-plane dynamic crushing of a novel bio-inspired re-entrant honeycomb with negative Poisson’s ratio. J Braz Soc Mech Sci Eng 43(10):1–18. https://doi.org/10.1007/s40430-021-03169-0

    Article  Google Scholar 

  5. Boukhatem M, Benmansour T, Valle V, Bouakba M (2019) Experimental in-plane characterization of a cellular material composed by a cell with a normal re-entrant link and geometrical parameters effects on the structure mechanical properties. J Braz Soc Mech Sci Eng 41(1):1–24. https://doi.org/10.1007/s40430-018-1528-3

    Article  Google Scholar 

  6. Najafi M, Ahmadi H, Liaghat G (2022) Investigation on the flexural properties of sandwich beams with auxetic core. J Braz Soc Mech Sci Eng 44(2):1–11. https://doi.org/10.1007/s40430-022-03368-3

    Article  Google Scholar 

  7. Usta F, Türkmen HS, Scarpa F (2021) Low-velocity impact resistance of composite sandwich panels with various types of auxetic and non-auxetic core structures. Thin-Walled Struct 163:107738. https://doi.org/10.1016/j.tws.2021.107738

    Article  Google Scholar 

  8. Usta F, Türkmen HS, Scarpa F (2022) High-velocity impact resistance of doubly curved sandwich panels with re-entrant honeycomb and foam core. Int J Impact Eng 165:104230. https://doi.org/10.1016/j.ijimpeng.2022.104230

    Article  Google Scholar 

  9. Grima JN, Evans KE (2006) Auxetic behavior from rotating triangles. J Mater Sci 41(10):3193–3196. https://doi.org/10.1007/s10853-006-6339-8

    Article  Google Scholar 

  10. Grima JN, Farrugia PS, Gatt R, Attard D (2008) On the auxetic properties of rotating rhombi and parallelograms: a preliminary investigation. Physica Status Solidi (b) 245(3):521–529. https://doi.org/10.1002/pssb.200777705

    Article  Google Scholar 

  11. Grima JN, Gatt R, Ellul B, Chetcuti E (2010) Auxetic behaviour in non-crystalline materials having star or triangular shaped perforations. J Non-Cryst Solids 356(37–40):1980–1987. https://doi.org/10.1016/j.jnoncrysol.2010.05.074

    Article  Google Scholar 

  12. Evans KE, Alderson A (2000) Auxetic materials: functional materials and structures from lateral thinking! Adv Mater 12(9):617–628. https://doi.org/10.1002/(SICI)1521-4095(200005)12:9%3c617::AID-ADMA617%3e3.0.CO;2-3

    Article  Google Scholar 

  13. Masters IG, Evans KE (1996) Models for the elastic deformation of honeycombs. Compos Struct 35(4):403–422. https://doi.org/10.1016/S0263-8223(96)00054-2

    Article  Google Scholar 

  14. Scarpa F, Panayiotou P, Tomlinson G (2000) Numerical and experimental uniaxial loading on in-plane auxetic honeycombs. J Strain Anal Eng Design 35(5):383–388. https://doi.org/10.1243/0309324001514152

    Article  Google Scholar 

  15. Hu LL, Zhou MZ, Deng H (2019) Dynamic indentation of auxetic and non-auxetic honeycombs under large deformation. Compos Struct 207:323–330. https://doi.org/10.1016/j.compstruct.2018.09.066

    Article  Google Scholar 

  16. Liu W, Wang N, Luo T, Lin Z (2016) In-plane dynamic crushing of re-entrant auxetic cellular structure. Mater Des 100:84–91. https://doi.org/10.1016/j.matdes.2016.03.086

    Article  Google Scholar 

  17. Dong Z, Li Y, Zhao T, Wu W, Xiao D, Liang J (2019) Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb. Mater Des 182:108036. https://doi.org/10.1016/j.matdes.2019.108036

    Article  Google Scholar 

  18. Li D, Yin J, Dong L, Lakes RS (2018) Strong re-entrant cellular structures with negative Poisson’s ratio. J Mater Sci 53(5):3493–3499. https://doi.org/10.1007/s10853-017-1809-8

    Article  Google Scholar 

  19. Wang H, Lu Z, Yang Z, Li X (2019) A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance. Compos Struct 208:758–770. https://doi.org/10.1016/j.compstruct.2018.10.024

    Article  Google Scholar 

  20. Tan HL, He ZC, Li KX, Li E, Cheng AG, Xu B (2019) In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson’s ratio. Compos Struct 229:111415. https://doi.org/10.1016/j.compstruct.2019.111415

    Article  Google Scholar 

  21. Ingrole A, Hao A, Liang R (2017) Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Mater Des 117:72–83. https://doi.org/10.1016/j.matdes.2016.12.067

    Article  Google Scholar 

  22. Xi H, Xu J, Cen S, Huang S (2021) Energy absorption characteristics of a novel asymmetric and rotatable re-entrant honeycomb structure. Acta Mech Solida Sin 34(4):550–560. https://doi.org/10.1007/s10338-021-00219-x

    Article  Google Scholar 

  23. Usta F, Scarpa F, Türkmen HS (2020) Edgewise compression of novel hexagonal hierarchical and asymmetric unit cells honeycomb metamaterials. Mater Today Commun 24:101102. https://doi.org/10.1016/j.mtcomm.2020.101102

    Article  Google Scholar 

  24. Han Z, Wei K (2022) Multi-material topology optimization and additive manufacturing for metamaterials incorporating double negative indexes of Poisson’s ratio and thermal expansion. Addit Manuf 54:102742. https://doi.org/10.1016/j.addma.2022.102742

    Article  Google Scholar 

  25. Rezaei S, Kadkhodapour J, Hamzehei R, Taherkhani B, Anaraki AP, Dariushi S (2021) Design and modeling of the 2D auxetic metamaterials with hyperelastic properties using topology optimization approach. Photonics Nanostruct Fundam Appl 43:100868. https://doi.org/10.1016/j.photonics.2020.100868

    Article  Google Scholar 

  26. Tang Y, Kurtz A, Zhao YF (2015) Bidirectional evolutionary structural optimization (BESO) based design method for lattice structure to be fabricated by additive manufacturing. Comput Aided Des 69:91–101. https://doi.org/10.1016/j.cad.2015.06.001

    Article  Google Scholar 

  27. Zhou Y, Li H, Li X, Gao L (2022) Design of multiphase auxetic metamaterials by a parametric color level set method. Compos Struct 287:115385. https://doi.org/10.1016/j.compstruct.2022.115385

    Article  Google Scholar 

  28. Wang Y, Luo Z, Zhang N, Kang Z (2014) Topological shape optimization of microstructural metamaterials using a level set method. Comput Mater Sci 87:178–186. https://doi.org/10.1016/j.commatsci.2014.02.006

    Article  Google Scholar 

  29. Xiong J, Gu D, Chen H, Dai D, Shi Q (2017) Structural optimization of re-entrant negative Poisson’s ratio structure fabricated by selective laser melting. Mater Des 120:307–316. https://doi.org/10.1016/j.matdes.2017.02.022

    Article  Google Scholar 

  30. Taherkhani B, Anaraki AP, Kadkhodapour J, Rezaei S, Tu H (2021) Large deformation of TPU re-entrant auxetic structures designed by TO approach. J Elastomers Plast 53(4):347–369. https://doi.org/10.1177/0095244320938411

    Article  Google Scholar 

  31. Filho SR, Silva TAA, Brandão LC, Christoforo AL, Panzera TH, Boba K, Scarpa F (2014) Failure analysis and Taguchi design of auxetic recycled rubber structures. Physica Status Solidi (b) 251(2):338–348. https://doi.org/10.1002/pssb.201384258

    Article  Google Scholar 

  32. Cherief M, Belaadi A, Bouakba M, Bourchak M, Meddour I (2020) Behaviour of lignocellulosic fibre-reinforced cellular core under low-velocity impact loading: Taguchi method. Int J Adv Manuf Technol 108(1):223–233. https://doi.org/10.1007/s00170-020-05393-9

    Article  Google Scholar 

  33. Usta F, Scarpa F, Türkmen HS, Johnson P, Perriman AW, Chen Y (2021) Multiphase lattice metamaterials with enhanced mechanical performance. Smart Mater Struct 30(2):025014. https://doi.org/10.1088/1361-665X/abd15d

    Article  Google Scholar 

  34. Bouhemame N, Aiadi KE, Bezazi A, Boumediri H, Reis PNB, Imad A, Scarpa F (2021) Tensile properties optimization of date palm leaflets using Taguchi method. J Nat Fibers. https://doi.org/10.1080/15440478.2021.1916674

    Article  Google Scholar 

  35. Harkati A, Boutagouga D, Harkati E, Bezazi A, Scarpa F, Ouisse M (2020) In-plane elastic constants of a new curved cell walls honeycomb concept. Thin-Walled Struct 149:106613. https://doi.org/10.1016/j.tws.2020.106613

    Article  Google Scholar 

  36. Chen S, Ryu SC (2017) Design and characterization of rounded re-entrant honeycomb patterns for lightweight and rigid auxetic structures. Smart Mater Struct 26(11):115026. https://doi.org/10.1088/1361-665X/aa8d3c

    Article  Google Scholar 

  37. Rayneau-Kirkhope D (2018) Stiff auxetics: Hierarchy as a route to stiff, strong lattice based auxetic meta-materials. Sci Rep 8(1):1–10. https://doi.org/10.1038/s41598-018-30822-x

    Article  Google Scholar 

  38. Baran T, Öztürk M (2020) In-plane elasticity of a strengthened re-entrant honeycomb cell. Eur J Mech-A/Solids 83:104037. https://doi.org/10.1016/j.euromechsol.2020.104037

    Article  MathSciNet  MATH  Google Scholar 

  39. Choudhry NK, Panda B, Kumar S (2022) In-plane energy absorption characteristics of a modified re-entrant auxetic structure fabricated via 3D printing. Compos B Eng 228:109437. https://doi.org/10.1016/j.compositesb.2021.109437

    Article  Google Scholar 

  40. Evans KE, Alderson A, Christian FR (1995) Auxetic two-dimensional polymer networks. An example of tailoring geometry for specific mechanical properties. J Chem Soc Faraday Trans 91(16):2671–2680. https://doi.org/10.1039/FT9959102671

    Article  Google Scholar 

  41. Bezazi A, Scarpa F, Remillat C (2005) A novel centresymmetric honeycomb composite structure. Compos Struct 71(3–4):356–364. https://doi.org/10.1016/j.compstruct.2005.09.035

    Article  Google Scholar 

  42. Mizzi L, Grima JN, Gatt R, Attard D (2019) Analysis of the deformation behavior and mechanical properties of slit-perforated auxetic metamaterials. Physica Status Solidi (b) 256(1):1800153. https://doi.org/10.1002/pssb.201800153

    Article  Google Scholar 

Download references

Funding

Support for this work has been provided by the Scientific and Technological Research Council of Turkey (TUBITAK) under Fellowship Number 2219-A with application number 1059B192100497.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Usta.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usta, F., Zhang, Z., Kurtaran, H. et al. Design optimization of modified re-entrant auxetic metamaterials reinforced with asymmetric edge cells for crushing behavior using the Taguchi method. J Braz. Soc. Mech. Sci. Eng. 44, 395 (2022). https://doi.org/10.1007/s40430-022-03705-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03705-6

Keywords

Navigation