Skip to main content
Log in

A review of solid particles mass flow rate measuring methods: screening analytic hierarchy process for methods prioritization

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Selecting the applicable measurement method in the measuring process of solid particle’s mass flow rate is of great importance in pneumatic conveying. Accurate prioritization of measurement methods from the important indices viewpoint’s such as cost, repeatability, low calibration, ability to run, and response time can assess this selection. In the present study, the solid particle’s mass flow rate measurement methods in two phase flows were studied comprehensively. Then, as a novelty, a systematic method namely analytic hierarchy process (AHP), was applied to prioritize measurement indices and methods. Results revealed that the repeatability index has the greatest priority in selecting the appropriate method. Based on this index, the coriolis force meter method was identified as the best measuring method. Additionally, regarding all the indices, acoustic method is selected as the most appropriate method. In this study, provided a systematic decision process and a knowledge base for using AHP in prioritizing measurement methods.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

AHP:

Analytic hierarchy process

Cs:

Capacitance sensor

Es:

Electrostatic sensor

Rs:

Radiometric sensor

Os:

Optical sensor

As:

Acoustic sensor

Tm (ECT):

Tomography method (Electronic capacitance tomography)

Tm (EOT):

Tomography method (Electronic optical tomography)

Di:

Digital imaging

Cm:

Coriolis meter

Tf:

Thermo-flow meter

References

  1. Zheng Y, Liu Q (2011) Review of techniques for the mass flow rate measurement of pneumatically conveyed solids. Meas J Int Meas Confed 44:589–604. https://doi.org/10.1016/j.measurement.2011.01.013

    Article  Google Scholar 

  2. Heming G, Huiwen D, Jun L (2017) Particle velocity measurement using linear capacitive sensor matrix. In: ICEMI 2017 - Proc IEEE 13th int conf electron meas instruments 2018–January, pp 306–312. https://doi.org/10.1109/ICEMI.2017.8265800

  3. Wang C, Jia L, Ye J (2021) Characterization of particle mass flow rate of gas-solid two-phase flow by the combination of transferred and induced current signals. IEEE Trans Instrum Meas 70:1–12. https://doi.org/10.1109/TIM.2021.3065435

    Article  Google Scholar 

  4. Mosorov V, Zych M, Hanus R et al (2020) Improvement of flow velocity measurement algorithms based on correlation function and twin plane electrical capacitance tomography. Sensors (Switzerland) 20:306. https://doi.org/10.3390/s20010306

    Article  Google Scholar 

  5. Zheng Y, Li Y, Liu Q (2007) Measurement of mass flow rate of particulate solids in gravity chute conveyor based on laser sensing array. Opt Laser Technol 39:298–305. https://doi.org/10.1016/j.optlastec.2005.07.012

    Article  Google Scholar 

  6. Carter RM, Yan Y (2004) An instrumentation system using combined sensing strategies for on-line mass flow rate measurement and particle sizing. Conf Rec - IEEE Instrum Meas Technol Conf 2:864–867. https://doi.org/10.1109/IMTC.2004.1351198

    Article  Google Scholar 

  7. O’Mahony N, Murphy T, Panduru K et al (2016) Acoustic and optical sensing configurations for bulk solids mass flow measurements. Proc Int Conf Sens Technol ICST. https://doi.org/10.1109/ICSensT.2016.7796229

    Article  Google Scholar 

  8. Yang Y, Zhang Q, Zi C et al (2017) Monitoring of particle motions in gas-solid fluidized beds by electrostatic sensors. Powder Technol 308:461–471. https://doi.org/10.1016/j.powtec.2016.11.034

    Article  Google Scholar 

  9. Qian X, Yan Y, Wang L, Shao J (2015) An integrated multi-channel electrostatic sensing and digital imaging system for the on-line measurement of biomass-coal particles in fuel injection pipelines. Fuel 151:2–10. https://doi.org/10.1016/j.fuel.2014.11.013

    Article  Google Scholar 

  10. Fuchs A, Zangl H (2008) Measuring flow parameters of particulate and powdery solids in industrial transportation processes. Int J Smart Sens Intell Syst 1:388–402

    Google Scholar 

  11. Zhang J, Hu H, Dong J, Yan Y (2012) Concentration measurement of biomass/coal/air three-phase flow by integrating electrostatic and capacitive sensors. Flow Meas Instrum 24:43–49. https://doi.org/10.1016/j.flowmeasinst.2012.03.003

    Article  Google Scholar 

  12. Jaworek A, Krupa A, Trela M (2004) Capacitance sensor for void fraction measurement in water/steam flows. Flow Meas Instrum 15:317–324. https://doi.org/10.1016/j.flowmeasinst.2004.04.002

    Article  Google Scholar 

  13. Li J, Kong M, Xu C et al (2015) An integrated instrumentation system for velocity, concentration and mass flow rate measurement of solid particles based on electrostatic and capacitance sensors. Sensors (Switzerland) 15:31023–31035. https://doi.org/10.3390/s151229843

    Article  Google Scholar 

  14. Wang Y, Yuan J, Yang G, Qiao Y (2012) Optimization design of capacitance sensor with helical shaped surface plates. Adv Mater Res 508:92–95. https://doi.org/10.4028/www.scientific.net/AMR.508.92

    Article  Google Scholar 

  15. Ding H, Li J, Wang H, Xu C (2021) Development of ring-shaped electrostatic coupled capacitance sensor for the parameter measurement of gas-solid flow. Trans Inst Meas Control 43:2567–2576. https://doi.org/10.1177/01423312211006640

    Article  Google Scholar 

  16. Yang D, Pu H, Han H et al (2020) Huge-scale capacitance mass flowmeter in gas/solid two-phase flow with rectangular vertical pipeline. Meas J Int Meas Confed 151:107235. https://doi.org/10.1016/j.measurement.2019.107235

    Article  Google Scholar 

  17. Gao H, Fan B, Chang Q (2019) The spatial filtering method of particle velocity measurement based on linear electrostatic sensor matrix. Rev Sci Instrum 90:075002. https://doi.org/10.1063/1.5100184

    Article  Google Scholar 

  18. Qian X, Yan Y, Wu S, Zhang S (2021) Measurement of velocity and concentration profiles of pneumatically conveyed particles in a square-shaped pipe using electrostatic sensor arrays. Powder Technol 377:693–708. https://doi.org/10.1016/j.powtec.2020.09.029

    Article  Google Scholar 

  19. Abbas F, Yan Y, Wang L (2021) Mass flow rate measurement of pneumatically conveyed solids through multimodal sensing and data-driven modeling. IEEE Trans Instrum Meas 70:1–16. https://doi.org/10.1109/tim.2021.3107599

    Article  Google Scholar 

  20. Peng L, Zhang Y, Yan Y (2008) Characterization of electrostatic sensors for flow measurement of particulate solids in square-shaped pneumatic conveying pipelines. Sens Actuators A Phys 141:59–67. https://doi.org/10.1016/j.sna.2007.07.021

    Article  Google Scholar 

  21. Wang C, Zhang J, Zheng W et al (2017) Signal decoupling and analysis from inner flush-mounted electrostatic sensor for detecting pneumatic conveying particles. Powder Technol 305:197–205. https://doi.org/10.1016/j.powtec.2016.09.081

    Article  Google Scholar 

  22. Yan Y, Xu L, Lee P (2006) Mass flow measurement of fine particles in a pneumatic suspension using electrostatic sensing and neural network techniques. IEEE Trans Instrum Meas 55:2330–2334. https://doi.org/10.1109/TIM.2006.887040

    Article  Google Scholar 

  23. Ganesh S, Troscinski R, Schmall N et al (2017) Application of X-ray sensors for in-line and noninvasive monitoring of mass flow rate in continuous tablet manufacturing. J Pharm Sci 106:3591–3603. https://doi.org/10.1016/j.xphs.2017.08.019

    Article  Google Scholar 

  24. Van Y, Byrne B, Coulthard J (1993) Radiation attenuation of pulverised fuel in pneumatic conveying systems. Trans Inst Meas Control 15:98–103. https://doi.org/10.1177/014233129301500301

    Article  Google Scholar 

  25. Barratt IR, Yan Y, Byrne B (2001) A parallel-beam radiometric instrumentation system for the mass flow measurement of pneumatically conveyed solids. Meas Sci Technol 12:1515–1528. https://doi.org/10.1088/0957-0233/12/9/319

    Article  Google Scholar 

  26. Barratt IR, Yan Y, Byrne B, Bradley MSA (2000) Mass flow measurement of pneumatically conveyed solids using radiometric sensors. Flow Meas Instrum 11:223–235. https://doi.org/10.1016/S0955-5986(00)00022-4

    Article  Google Scholar 

  27. Grift T (2003) Fundamental mass flow measurement of solid particles. Part Sci Technol 21:177–193. https://doi.org/10.1080/02726350307492

    Article  Google Scholar 

  28. Li Y, Zheng YN, Yue HW (2005) Design of fan beam optical sensor and its application in mass flow rate measurement of pneumatically conveyed solids. J Zhejiang Univ Sci 6(12):1430–1434. https://doi.org/10.1631/jzus.2005.A1430

    Article  Google Scholar 

  29. Mohd Muji SZ, Rahim RA, Fazalul Rahiman MH et al (2011) Optical tomography: a review on sensor array, projection arrangement and image reconstruction algorithm. Int J Innov Comput Inf Control 7:3839–3856

    Google Scholar 

  30. Mahmod MM, Liyana MAH, Mohamad EJ, Marwah OMF (2014) Velocity profile measurement of solid particles using LED as a light source. In: 2014 IEEE student conf res dev SCOReD 2014. https://doi.org/10.1109/SCORED.2014.7072974

  31. Dieter P, Stefan D, Günter E, Michael K (2011) In-line particle sizing for real-time process control by fibre-optical spatial filtering technique (SFT). Adv Powder Technol 22:203–208. https://doi.org/10.1016/j.apt.2010.11.002

    Article  Google Scholar 

  32. Yin J, Zhao Z, Lei C, Yang SX (2021) Improved optical-type measurement method of grain flow using array near-infrared photoelectric sensors. Comput Electron Agric 183:106075. https://doi.org/10.1016/j.compag.2021.106075

    Article  Google Scholar 

  33. Abbas F, Wang L, Yan Y (2020) Mass flow rate measurement of solids in a pneumatic conveying pipeline in different orientations. Meas Sens 10–12:100021. https://doi.org/10.1016/j.measen.2020.100021

    Article  Google Scholar 

  34. Ruiz-Carcel C, Starr A, Nsugbe E (2018) Estimation of powder mass flow rate in a screw feeder using acoustic emissions. Powder Technol 336:122–130. https://doi.org/10.1016/j.powtec.2018.05.029

    Article  Google Scholar 

  35. Zhang P, Yang Y, Huang Z et al (2021) Machine learning assisted measurement of solid mass flow rate in horizontal pneumatic conveying by acoustic emission detection. Chem Eng Sci 229:116083. https://doi.org/10.1016/j.ces.2020.116083

    Article  Google Scholar 

  36. Suppan T, Neumayer M, Bretterklieber T et al (2021) Performance assessment framework for electrical capacitance tomography based mass concentration estimation in pneumatic conveying systems. pp 1–6. https://doi.org/10.1109/i2mtc50364.2021.9459986

  37. Zhang W, Wang C, Yang W, Wang CH (2014) Application of electrical capacitance tomography in particulate process measurement - a review. Adv Powder Technol 25:174–188. https://doi.org/10.1016/j.apt.2013.12.003

    Article  Google Scholar 

  38. Hansen LS, Pedersen S, Durdevic P (2019) Multi-phase flow metering in offshore oil and gas transportation pipelines: trends and perspectives. Sensors (Switzerland) 19:1–26. https://doi.org/10.3390/s19092184

    Article  Google Scholar 

  39. Sun M, Liu S, Lei J, Li Z (2008) Mass flow measurement of pneumatically conveyed solids using electrical capacitance tomography. Meas Sci Technol 19:045503. https://doi.org/10.1088/0957-0233/19/4/045503

    Article  Google Scholar 

  40. Abdul Rahim R, Leong LC, Chan KS et al (2008) Real time mass flow rate measurement using multiple fan beam optical tomography. ISA Trans 47:3–14. https://doi.org/10.1016/j.isatra.2007.05.005

    Article  Google Scholar 

  41. Schleicher E, Da Silva MJ, Thiele S et al (2008) Design of an optical tomograph for the investigation of single- and two-phase pipe flows. Meas Sci Technol 19:094006. https://doi.org/10.1088/0957-0233/19/9/094006

    Article  Google Scholar 

  42. Mosorov V, Rybak G, Sankowski D (2021) Plug regime flow velocity measurement problem based on correlability notion and twin plane electrical capacitance tomography: use case. Sensors 21:1–13. https://doi.org/10.3390/s21062189

    Article  Google Scholar 

  43. Fabijańska A, Banasiak R (2021) Graph convolutional networks for enhanced resolution 3D electrical capacitance tomography image reconstruction. Appl Soft Comput 110:107608. https://doi.org/10.1016/j.asoc.2021.107608

    Article  Google Scholar 

  44. Taghavivand M, Mehrani P, Sowinski A, Choi K (2021) Electrostatic charging behaviour of polypropylene particles during pulse pneumatic conveying with spiral gas flow pattern. Chem Eng Sci 229:116081. https://doi.org/10.1016/j.ces.2020.116081

    Article  Google Scholar 

  45. Miłak M, Leszczyńska A, Grudzień K et al (2019) Slug flow velocity estimation during pneumatic conveying of bulk solid materials based on image processing techniques. Inform Autom Pomiary w Gospod i Ochr Środowiska 9:11–14. https://doi.org/10.5604/01.3001.0013.0881

    Article  Google Scholar 

  46. Gao L, Yan Y, Lu G (2011) Contour-based image segmentation for on-line size distribution measurement of pneumatically conveyed particles. Conf Rec - IEEE Instrum Meas Technol Conf. https://doi.org/10.1109/IMTC.2011.5944318

    Article  Google Scholar 

  47. Song D, Peng L, Lu G et al (2009) Digital image processing based mass flow rate measurement of gas/solid two-phase flow. J Phys Conf Ser 147:12048. https://doi.org/10.1088/1742-6596/147/1/012048

    Article  Google Scholar 

  48. Zheng D, Wang S, Liu B, Fan S (2016) Theoretical analysis and experimental study of Coriolis mass flow sensor sensitivity. J Fluids Struct 65:295–312. https://doi.org/10.1016/j.jfluidstructs.2016.06.004

    Article  Google Scholar 

  49. Anklin M, Drahm W, Rieder A (2006) Coriolis mass flowmeters: overview of the current state of the art and latest research. Flow Meas Instrum 17:317–323. https://doi.org/10.1016/j.flowmeasinst.2006.07.004

    Article  Google Scholar 

  50. Hu Y-C, Chen Z-Y, Chang P-Z (2021) Fluid-structure coupling effects in a dual U-tube Coriolis mass flow meter. Sensors 982:1–30

    Google Scholar 

  51. Kato M, Pugh J, McGlinchey D (2014) Development of a particulate solids thermal mass flowmeter. KONA Powder Part J 31:163–170. https://doi.org/10.14356/kona.2014007

    Article  Google Scholar 

  52. Zheng Y, Pugh JR, McGlinchey D, Ansell RO (2008) Simulation and experimental study of gas-to-particle heat transfer for non-invasive mass flow measurement. Meas J Int Meas Confed 41:446–454. https://doi.org/10.1016/j.measurement.2007.01.007

    Article  Google Scholar 

  53. Zheng Y, McGlinchey D, Pugh J, Li Y (2014) Experimental investigation on heat transfer mechanisms of pneumatically conveyed solids’ plugs as a means to mass flow rate measurement. Flow Meas Instrum 40:232–237. https://doi.org/10.1016/j.flowmeasinst.2014.08.012

    Article  Google Scholar 

  54. Hosseinzadeh Chaboki H, Rahbar Shahrouzi J, Hassanpour A (2018) Experimental and simulation studies of the effect of restrictor and distributor on the performance of thermal mass flow meter. Meas J Int Meas Confed 119:259–264. https://doi.org/10.1016/j.measurement.2018.01.059

    Article  Google Scholar 

  55. Fu F, Xu C, Wang S (2018) Flow characterization of high-pressure dense-phase pneumatic conveying of coal powder using multi-scale signal analysis. Particuology 36:149–157. https://doi.org/10.1016/j.partic.2017.05.003

    Article  Google Scholar 

  56. Zheng G, Yan Y, Hu Y et al (2021) Mass-flow-rate measurement of pneumatically conveyed particles through acoustic emission detection and electrostatic sensing. IEEE Trans Instrum Meas 70:1–13. https://doi.org/10.1109/TIM.2020.3039619

    Article  Google Scholar 

  57. Zhang L, Lavagnolo MC, Bai H et al (2019) Environmental and economic assessment of leachate concentrate treatment technologies using analytic hierarchy process. Resour Conserv Recycl 141:474–480. https://doi.org/10.1016/j.resconrec.2018.11.007

    Article  Google Scholar 

  58. Caputo AC, Pelagagge PM, Salini P (2013) AHP-based methodology for selecting safety devices of industrial machinery. Saf Sci 53:202–218. https://doi.org/10.1016/j.ssci.2012.10.006

    Article  Google Scholar 

  59. Gang X, Yang Y-p, Shi-yuan L, Li L, Song X (2011) Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process. Energy Policy 39:2343–2351. https://doi.org/10.1016/j.enpol.2011.01.054

    Article  Google Scholar 

  60. Liang X, Wang X, Shu G et al (2015) A review and selection of engine waste heat recovery technologies using analytic hierarchy process and grey relational analysis. Int J Energy Res 39:453–471

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Rostampour.

Additional information

Technical Editor: Francis HR Franca.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samadi, M., Rostampour, V. & Abdollahpour, S. A review of solid particles mass flow rate measuring methods: screening analytic hierarchy process for methods prioritization. J Braz. Soc. Mech. Sci. Eng. 44, 359 (2022). https://doi.org/10.1007/s40430-022-03663-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03663-z

Keywords

Navigation