Skip to main content
Log in

A Lagrangian roughness model integrated with the vortex method for drag coefficient estimation and flow control investigations around circular cylinder for a wide range of Reynolds numbers

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper describes the development of a Lagrangian roughness model to simulate the effect of surface roughness in two-dimensional flow on the proximity of the cylinder, at high Reynolds numbers. The designed numerical model introduces a dynamic disturbance in the vicinity of the wall in addition to the distribution of triangular roughness elements in the body using the panel method, consolidating a refined boundary layer condition. A new discretization strategy for the vorticity field is used to make up a wide range of Reynolds numbers, \(2 \times 10^{4} \le {\text{Re}} \le 6 \times 10^{5}\), which also ensures control of turbulence. It is integrated with the discrete vortex method—DVM and the second-order velocity structure function is applied for turbulence closure. The main findings are that numerically the drag coefficient depends on the relative roughness, the Reynolds number and the cutoff width of the characteristic vorticity distribution; the largest reductions in drag are observed for intermediate roughness compared to a smooth surface, reaching 51.6% for a relative roughness of 0.003 and Reynolds number set at \(1.0 \times 10^{5}\); the core sizes of the discrete vortex need to be generated with different sizes for correct enforcement of the wall influence; it is possible to map the drag crisis under various flow conditions in cylinders with different surfaces, without the use of refined meshes and wall functions, using the DVM. OpenMP is implemented for average reductions of 80% in processing time. The considerable closeness with the experimental results reflects the applicability of the proposed method and the relevance of the two-dimensional approach for predicting unsteady aerodynamic forces on a cylinder with different rough surfaces for engineering purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Parkinson G (1989) Phenomena and modelling of flow-induced vibrations of bluff bodies. Prog Aerospace Sci 26:169–224. https://doi.org/10.1016/0376-0421(89)90008-0

    Article  Google Scholar 

  2. Sumer BM, Fredsøe J (2006) Hidrodynamics around Cylindrical Structures. World Scientific Publishing Co Pte Ltd, Advanced Series on Ocean Engineering

    Book  Google Scholar 

  3. Roshko A (1961) Experiments on the flow past a circular cylinder at very high Reynolds number. J Fluid Mech 10:345–356. https://doi.org/10.1017/S0022112061000950

    Article  MATH  Google Scholar 

  4. Schewe G (1983) On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers. J Fluid Mech 133:265–285

    Article  Google Scholar 

  5. Gerrard JH (1978) The wakes of cylindrical bluff bodies at low Reynolds number. Philos Trans R Soc B 288:351–382. https://doi.org/10.1098/rsta.1978.0020

    Article  Google Scholar 

  6. Achenbach E (1968) Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re =5 × 106. J Fluid Mech 34:625–639

    Article  Google Scholar 

  7. Catalano P, Meng W, Gianluca I, Parviz M (2003) Numerical simulation of the flow around a circular cylinder at high Reynolds numbers. Int J Heat Fluid Flow 24:463–469

    Article  Google Scholar 

  8. Ong MC, Utnes T, Holmedal LE, Myrhaug D, Pettersen B (2009) Numerical simulation of flow around a smooth circular cylinder at very high Reynolds numbers. Mar Struct 22:142–153

    Article  Google Scholar 

  9. Lehmkuhl O, Rodríguez I, Borrell R, Chiva J, Oliva A (2014) Unsteady forces on a circular cylinder at critical Reynolds numbers. Phys Fluids doi 10(1063/1):4904415

    Google Scholar 

  10. Mustto AA, Bodstein GCR (2011) Subgrid-scale modeling of turbulent flow around circular cylinder by mesh-free vortex method. Eng Appl Comput Fluid Mech 2:259–275

    Google Scholar 

  11. Gerrard JH (1966) The mechanics of the formation region of vortices behind bluff bodies. J Fluid Mech 25(2):40–413

    Article  Google Scholar 

  12. Basu RI (1985) Aerodynamic forces on structures of circular cross-section Part 1 Model-scale data obtained under two-dimensional conditions in low-turbulence streams. J Wind Eng Ind 21(3):273–294

    Article  Google Scholar 

  13. Cebeci T, Bradshaw P (1977) Momentum Transfer in Boundary Layers. McGraw-Hill, New York

    MATH  Google Scholar 

  14. Roshko A, Fiszdon W (1969) On the persistence of transistion in the near wake. Society of Industrial and Applied Mathematics, Philadelphia, Proc. Symp. on Problems of Aerodynamics and Continuum Mechanics

    Google Scholar 

  15. Williamson CHK (1996) Vortex Dynamics in the Cylinder Wake. Annu Rev Fluid Mech 28:477–539. https://doi.org/10.1146/annurev.fl.28.010196.002401

    Article  MathSciNet  Google Scholar 

  16. Singh SP, Mittal S (2005) Flow past a cylinder: shear layer instability and drag crisis. Int J Numer Methods Fluids 47:75–98. https://doi.org/10.1002/fld.807

    Article  MATH  Google Scholar 

  17. Hinterberger C, Fröhlich J, Rodi W (2007) Three-dimensional and depth-averaged large-eddy simulations of some shallow water flows. J Hydraul Eng 133:857–872. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:8(857)

    Article  Google Scholar 

  18. Mittal R, Balachandar S (1995) Effect of threedimensionality on the lift and drag of nominally twodimensional cylinders. Phys Fluids doi 10(1063/1):868500

    Google Scholar 

  19. Nikuradse J (1933) Strömungsgesetze in Rauhen Rohren (Laws of Turbulent Pipe Flow in Smooth Pipes). VDI-Forschungsheft: Germany, 361 (in German) (Translated in NACA Tech. Memo. No. 1292, 1050)

  20. Huang G, Simoëns S, Vinkovic I, Ribault CL, Dupont S, Bergametti G (2016) Law-of-the-wall in a boundary-layer over regularly distributed roughness elements. J Turbul 17:518–541. https://doi.org/10.1080/14685248.2016.1139121

    Article  Google Scholar 

  21. Kadivar M, Tormey D, McGranaghan G (2021) A review on turbulent flow over rough surfaces: fundamentals and theories. Int J Thermofluid Sci Technol. https://doi.org/10.1016/j.ijft.2021.100077

    Article  Google Scholar 

  22. Perry AE, Schofield WH, Joubert PN (1969) Rough wall turbulent boundary layers. J Fluid Mech 37(2):383–413. https://doi.org/10.1017/S0022112069000619

    Article  Google Scholar 

  23. Coleman SE, Nikora VI, McLean SR, Schlicke E (2007) Spatially averaged turbulent flow over square ribs. J Eng Mech 133:194–204

    Article  Google Scholar 

  24. Silveira Neto A (2020) Escoamentos Turbulentos: Análise Física e Modelagem Teórica. Editora Composer, Brasil

    Google Scholar 

  25. Alcântara Pereira LA, Hirata MH, Manzanares Filho N (2004) Wake and aerodynamics loads in multiple bodies – application to turbomachinery blade rows. J Wind Eng Ind 92(6):477–491. https://doi.org/10.1016/j.jweia.2004.02.001

    Article  Google Scholar 

  26. Bimbato AM, Alcântara Pereira LA, Hirata MH (2019) Development of a new Lagrangian vortex method for evaluating effects of surface roughness. Eur J Mech B Fluids 74:291–330. https://doi.org/10.1016/j.euromechflu.2018.09.001

    Article  MathSciNet  Google Scholar 

  27. Andrade CL, Alcântara Pereira LA, Bimbato AM (2016) Boxes structure construction around the clusters of vortex elements to reduce the computational cost of a lagrangian vortex method with roughness model. In: Proceedings of the 16th Brazilian Congress of Thermal Sciences and Engineering

  28. Bimbato AM, Alcântara Pereira LA, Hirata MH (2020) Study of surface roughness effect on a bluff body - the formation of asymmetric separation bubbles. Energies 13(22):6094. https://doi.org/10.3390/en13226094

    Article  Google Scholar 

  29. Zeid EB, Meneveau C, Parlange MB (2004) Applications of the Lagrangian Dynamic Model in LES of Turbulent Flow Over Surfaces with Heterogeneous Roughness Distributions. In: Proceedings of HT-FED2004: ASME Heat Transfer/Fluids Engineering Summer Conference, Charlotte, North Carolina, USA

  30. Alcântara Pereira LA, Oliveira MA, Moraes PG, Bimbato AM (2020) Numerical experiments of the flow around a bluff body with and without roughness model near a moving wall. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-020-2217-6

    Article  Google Scholar 

  31. Oliveira MA, Moraes PG, Andrade CL, Bimbato AM, Alcântara Pereira LA (2020) Control and suppression of vortex shedding from a slightly rough circular cylinder by a discrete vortex method. Energies 13(17):4481. https://doi.org/10.3390/en13174481

    Article  Google Scholar 

  32. Faure T, Leogrande C (2020) High angle-of-attack aerodynamics of a straight wing with finite span using a discrete vortex method. Phys Fluids doi 10(1063/5):0025327

    Google Scholar 

  33. Hammer P, Altman A, Eastep F (2014) Validation of a discrete vortex method for low Reynolds number unsteady flows. AIAA J 52:643–649. https://doi.org/10.2514/1.J052510

    Article  Google Scholar 

  34. Moraes PG, Alcântara Pereira LA (2021) Surface roughness effects on flows past two circular cylinders in tandem arrangement at co-shedding regime. Energies 14(24):8237. https://doi.org/10.3390/en14248237

    Article  Google Scholar 

  35. Gumerov A (2020) Simulation of separated flow past an inclined and normal plates by a discrete vortex method. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/890/1/012161/pdf

    Article  Google Scholar 

  36. Oliveira MA, Moraes PG, Alcântara Pereira LA (2020) Wing tip vortices dynamics with cross wind effect using the Large Eddy Simulation (LES) theory. In: 12th Spring School on Transition and Turbulence, Blumenau, Brazil

  37. Katz J, Plotkin A (1991) Low Speed Aerodynamics: from Wing Theory to Panel Methods. McGraw Hill Inc

  38. Métais O, Lesieur M (1992) Spectral large-eddy simulations of isotropic and stably-stratified turbulence. J Fluid Mech 239:157–194. https://doi.org/10.1017/S0022112092004361

    Article  MathSciNet  MATH  Google Scholar 

  39. Barba LA (2004) Vortex method for computing high-Reynolds number flows: increased accuracy with a fully mesh-less formulation. Ph.D. Thesis, California Institute of Technology

  40. Barba LA, Leonard A, Allen CB (2003) Numerical investigations on the accuracy of the vortex method with and without remeshing. In: 16th AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics

  41. Barba LA, Leonard A, Allen CB (2005) Vortex method with meshless spatial adaption for accurate simulation of viscous, unsteady vortical flows. Int J Numer Methods Fluids 47:841–848

    Article  MathSciNet  Google Scholar 

  42. Yokota R, Obi S (2011) Vortex methods for the simulation of turbulent flows: review. J Fluid Sci Technol 6:14–29. https://doi.org/10.1299/jfst.6.14

    Article  Google Scholar 

  43. Bhagwat MJ, Leishman JG (2002) Generalized viscous vortex model for application to free-vortex wake and aeroacoustic calculations. In: 58th Annual Forum and Technology Display of the American Helicopter Society International

  44. Bloor S, Gerrard JH (1966) Measurements on turbulent vortices in a cylinder wake. Proc Royal Soc London Ser A Math Phys Sci 294:319–342. https://doi.org/10.1098/rspa.1966.0210

    Article  Google Scholar 

  45. Roshko A (1954) On the development of turbulent wakes from vortex streets. Tech Report, 1191

  46. Stock MJ (2007) Summary of Vortex Methods Literature: A living document rife with opinion. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.1239&rep=rep1&type=pdf. Accessed 25 november 2020

  47. Lakehal D (1999) Computation of turbulent shear flows over rough-walled circular cylinders. J Wind Eng Ind 80:47–68. https://doi.org/10.1016/S0167-6105(98)00122-6

    Article  Google Scholar 

  48. Barba LA, Rossi LF (2010) Global field interpolation for particle methods. J Comput Phys 229:1292–1310. https://doi.org/10.1016/j.jcp.2009.10.031

    Article  MathSciNet  MATH  Google Scholar 

  49. Lesieur M, Métais O (1996) New trends in large-eddy simulation of turbulence. Annu Rev Fluid Mech 28:45–82. https://doi.org/10.1146/annurev.fl.28.010196.00040

    Article  MathSciNet  Google Scholar 

  50. Shaanan S, Ferziger JH, Reynolds WC (1975) Numerical simulation of turbulence in the presence of shear. Report n. TF-6, Department of Mechanical Engineering, Stanford University

  51. Silveira Neto A, Grand D, Lesieur M, Metais O (1993) A numerical investigation of coherent vortices in turbulence behind a backward-facing step. J Fluid Mech 256:1–25. https://doi.org/10.1017/S0022112093002691

    Article  MATH  Google Scholar 

  52. Schmitt FG (2007) About Boussinesq’s turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity. Comptes Rendus Mécanique 335:617–627. https://doi.org/10.1016/j.crme.2007.08.004

    Article  MATH  Google Scholar 

  53. Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  54. Jofre L, Domino SP, Iaccarino G (2019) Eigensensitivity analysis of subgrid-scale stresses in large-eddy simulation of a turbulent axisymmetric jet. Int J Heat Fluid Flow 77:314–335. https://doi.org/10.1016/j.ijheatfluidflow.2019.04.014

    Article  Google Scholar 

  55. Pinho JM, Muniz AR (2021) The effect of subgrid-scale modeling on LES of turbulent coaxial jets. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-021-02798-9

    Article  Google Scholar 

  56. Kara R, Çağlar M (2018) Çinlar subgrid scale model for large eddy simulation. Appl Math Comput 322:89–99. https://doi.org/10.1016/j.amc.2017.11.033

    Article  MathSciNet  MATH  Google Scholar 

  57. Lilly DK (1967) The representation of small-scale turbulence in numerical simulation experiments. In: Proceedings of the IBM Scientific Computing Symposium on Environmental Science. Yorktown Heights, New York

  58. Chollet JP, Lesieur M (1981) Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. J Atmos Sci 38:2747–2757

    Article  Google Scholar 

  59. Bimbato AM, Alcântara Pereira LA, Hirata MH (2012) Corrected Lagrangian LES Model for Vortex Method. In: Proceedings of the 8th Spring School on Transition and Turbulence, São Paulo, Brazil

  60. Bimbato AM, Alcântara Pereira LA, Hirata MH (2013) Suppression of vortex shedding on a bluff body. J Wind Eng 121:16–28. https://doi.org/10.1016/j.jweia.2013.06.013

    Article  Google Scholar 

  61. Shintani M, Akamatsu T (1994) Investigation of two dimensional discrete vortex method with viscous diffusion model. Trans Japan Soc Mech Eng B 60:1110–1117

    Article  Google Scholar 

  62. Chorin AJ (1973) Numerical Study of Slightly Viscous Flow. J Fluid Mech 57:785–796. https://doi.org/10.1017/S0022112073002016

    Article  MathSciNet  Google Scholar 

  63. Ferziger JH (1981) Numerical methods for engineering application. Wiley

    MATH  Google Scholar 

  64. Einstein A (1956) Investigation on the Theory of Brownian Motion. Dover Publications, New York

    Google Scholar 

  65. Kamemoto K (1994) Development of the Vortex Methods for Grid-Free Lagrangian Direct Numerical Simulation. In: Proceedings of the Third JSME-KSME, Sendai, Japan

  66. Uhlman JS (1992) An Integral Equation Formulation of the Equation of Motion of an Incompressible Fluid. Naval Undersea Warfare Center Technical rept, US

    Book  Google Scholar 

  67. Ricci JER (2002) Numerical Simulation of Flow around a Body of Arbitrary Shape, parked in the vicinity of a Flat Surface, using the Vortex Method. Ph.D. Thesis, Federal University of Engineering of Itajubá

  68. Mustto A, Hirata M, Bodstein G (1998) Discrete vortex method simulation of the flow around a circular cylinder with and without rotation. AIAA J. https://doi.org/10.2514/6.1998-2409

    Article  Google Scholar 

  69. Blevins RD (1984) Applied Fluid Dynamics Handbook. Van Nostrand, Reinhold Co

    Google Scholar 

  70. Moraes PG, Oliveira MA, Andrade CL, Bimbato AM, Alcântara Pereira LA (2021) Effects of surface roughness and wall confinement on bluff body aerodynamics at large-gap regime. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-021-03111-4

    Article  Google Scholar 

  71. Jiang L, Shan H, Mansfield J, Junghans K, Harrison E (2017) LES of Flow Past a Circular Cylinder with Roughened Surface. In: Proceedings of the ASME Fluids Engineering Division Summer Meeting, Hawaii, USA

  72. Andrade CL (2017) Development of an accelerator algorithm for the turbulence modeling of a Lagrangian Discrete Vortex Method. Dissertation, Federal University of Itajubá

  73. Alcântara Pereira LA, Hirata MH, Silveira Neto A (2003) A Vortex Method with Turbulence Sub-Grid Scale Modelling. J Braz Soc Mech Sci Eng 25:140–146. https://doi.org/10.1590/S1678-58782003000200005

    Article  Google Scholar 

  74. Sampaio PAB, Coutinho ALGA (2000) Simulating Vortex Shedding at High Reynolds Numbers. In: The Tenth International Offshore and Polar Engineering Conference, Seattle, USA

  75. Milne-Thompson LM (1955) Theoretical Hydrodynamics. Macmillan & Co, London

    MATH  Google Scholar 

  76. Son JS, Hanratty TJ (1969) Velocity gradients at the wall for flow around a cylinder at reynolds number from 5 × 103 to 105. J Fluid Mech 35:353–368. https://doi.org/10.1017/S0022112069001157

    Article  Google Scholar 

  77. Zhou B, Wang X, Gho WM, TAN SK (2015) Force and flow characteristics of a circular cylinder with uniform surface roughness at subcritical Reynolds numbers. Appl Ocean Res 49:20–26. https://doi.org/10.1016/j.apor.2014.06.002

    Article  Google Scholar 

  78. Wieselsberger C (1923) Versuche über den luftwiderstand gerundeter und kantiger körper, In: Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingem, v. II, Lieferung: Prandtl L. (ed.)

  79. Fage A, Warsap JH (1930) The effects of turbulence and surface roughness on the drag of a circular cylinder. London, UK: H.M. Stationary Office

  80. Relf EF, Simmons LFG (1924) The frequency of eddies generated by the motion of circular cylinders through a fluid. Aero Res Counc, Lond, Rep and Mem no 917

  81. Ribner HS, Etkin B (1958) Noise research in Canada. Proc. 1st Int. Congr Aero Sci, Madrid (publ. by Pergamon Press, London, 1959)

  82. Delanyn K, Sorensen E (1953) Low-speed drag of cylinders of various shapes. Nat Adv Comm Aero, Wash, Tech Note 3038

  83. Deshpande R, Desai A, Kanti V, Mittal S (2017) Experimental investigation of boundary layer transition in flow past a bluff body. J Phys: Conf Ser 822:003

    Google Scholar 

  84. Kim SE, Mohan LS (2005) Prediction of unsteady loading on a circular cylinder in high reynolds number flows using large eddy simulation. In: Proceedings of OMAE: 24 th International Conference on Offshore Mechanics and Arctic Engineering, Halkidiki, Greece

  85. Chakroun WM, Abdel-Rahman AA, Quadri MMA (1997) Fluid characteristics for flow past a rough circular cylinder. AIAA Meeting Papers on Disc. https://doi.org/10.2514/6.1997-713

    Article  Google Scholar 

  86. Achenbach E (1971) Influence of surface roughness on the cross-flow around a circular cylinder. J Fluid Mech 46:321–335

    Article  Google Scholar 

  87. Achenbach E, Heinecke E (1981) On vortex shedding from smooth and rough cylinders in the range of Reynolds numbers 6x103 to 5x106. J Fluid Mech 109:239–251

    Article  Google Scholar 

  88. Guven O, Farell C, Patel VC (1980) Surface roughness effects on the mean flow past circular cylinders. J Fluid Mech 98(4):673–701. https://doi.org/10.1017/S0022112080000341

    Article  Google Scholar 

  89. Chutkey K, Suriyanarayanan P, Venkatakrishnan L (2018) Near wake field of circular cylinder with a forward splitter plate. J Wind Eng Ind 173:28–38. https://doi.org/10.1016/j.jweia.2017.11.019

    Article  Google Scholar 

  90. Alonzo-García A, Gutiérrez-Torres CC, JiméneZ-Bernala JA, López-Aguado-Montes JL, Barbosa-Saldaña JG, Mollinedo-Ponce-de-Leon HR, Martinez-Delgadillo SA (2015) Large eddy simulation of the subcritical flow over a V groovedcircular cylinder. Nucl Eng Des 291:35–46. https://doi.org/10.1016/j.nucengdes.2015.05.001

    Article  Google Scholar 

  91. Bimbato AM, Alcântara Pereira LA, Hirata MH (2011) Study of the vortex shedding flow around a body near a moving ground. J Wind Eng Ind 99:7–17. https://doi.org/10.1016/j.jweia.2010.10.003

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos André de Oliveira.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Technical Editor: Daniel Onofre de Almeida Cruz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, M.A., Alcântara Pereira, L.A. A Lagrangian roughness model integrated with the vortex method for drag coefficient estimation and flow control investigations around circular cylinder for a wide range of Reynolds numbers. J Braz. Soc. Mech. Sci. Eng. 44, 331 (2022). https://doi.org/10.1007/s40430-022-03605-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03605-9

Keywords

Navigation