Skip to main content
Log in

Effect of optimum process parameters on material removal in rotational-magnetorheological miniature gear profile polishing (R-MRMGPP) process

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The traditional finishing method causes form inaccuracy in miniature gear profiles due to the transverse grinding line, fine microcrack, claw-mark, burr, pit and thermal distortions. Because of the small space between their teeth, tiny gear can only be polished in a very few ways. This article reports on the new flow restrictor used in rotational-magnetorheological miniature gear profile polishing (R-MRMGPP) process for precise polishing of miniature gear profiles. The response surface method (RSM) is utilized to investigate the effect of key factors on process performance. Further, simulation of finishing forces is conducted using COMSOL® Multiphysics software, which is based on finite element analysis (FEA). The study of finishing forces assists in accurately understanding the processing mechanism. A model is also simulated to determine the depth of indentation produced by an abrasive on SS316L miniature gear tooth profile due to normal finishing forces. Experimental results identified that combining a higher number of finishing cycles, a lower volumetric proportion of iron/abrasive particles, and a higher extrusion pressure is more favourable to obtain high material removal rate (MRR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

B :

Magnetic flux density (MFD) (T)

B (x) :

MFD variation in work gap (x) (T)

D g :

Abrasive particles (APs) diameter (μm)

F a :

Axial force (N)

F c :

Centrifugal force (N)

F m :

Normal magnetic force (N)

F t :

Tangential force (N)

H 0 :

Magnetic field strength (A/m)

M :

Iron particles (IPs) magnetization (A-m2/Kg)

m AP :

APs mass (kg)

m ip :

IPs mass (kg)

M s :

Saturation magnetization (A-m2/Kg)

N :

Number of finishing cycles

P :

Extrusion pressure (bar)

r :

Distance of an AP from centre (m)

v :

MRPF APs axial velocity (m/s)

V :

Vol. ratio of IPs/APs

S:

Magnet rotational speed (rpm)

\(\chi_{m}\) :

IPs magnetic susceptibility (m3/kg)

τ :

MRPF shear strength (kPa)

\(\dot{\gamma }\) :

Shear rate

v ip :

IPs Vol. fraction

η :

Non-Newtonian viscosity (kg/(m s))

μ 0 :

Magnetic permeability of free space (Wb/A m)

ω :

Angular velocity (rad/s)

References

  1. Davis JR (2005) Gear materials, properties, and manufacture. ASM International, Materials Park, OH, pp 500–600. ISBN - 0871708159

  2. Fujisawa Y, Komori M (2010) Method for removing burrs and pits from small gears using a gear-shaped tool composed of glass-fiber-reinforced plastic. J Mater Process Technol 210:1159–1170. https://doi.org/10.1016/j.jmatprotec.2010.02.025

    Article  Google Scholar 

  3. Kawasaki Y, Shinoda M, Nojiri S et al (1984) Development of a new automatic gear selecting machine for automobile transaxle manufacturing. CIRP Ann 33:363–368. https://doi.org/10.1016/S0007-8506(07)61443-7

    Article  Google Scholar 

  4. Ahmad S, Anant S, Singh K, Kumar S (2020) Experimental analysis of magnetorheological finishing of blind hole surfaces using permanent magnet designed tools. J Brazilian Soc Mech Sci Eng 42:1–23. https://doi.org/10.1007/s40430-020-2225-6

    Article  Google Scholar 

  5. Kataria M, Mangal SK (2019) Development of continuous flow magnetorheological fluid finishing process for finishing of small holes. J Brazilian Soc Mech Sci Eng 41:1–13. https://doi.org/10.1007/s40430-019-2027-x

    Article  Google Scholar 

  6. Das M, Jain VK, Ghoshdastidar PS (2012) Nanofinishing of flat workpieces using rotational–magnetorheological abrasive flow finishing (R-MRAFF) process. Int J Adv Manuf Technol 62:405–420. https://doi.org/10.1007/s00170-011-3808-2

    Article  Google Scholar 

  7. Jain NK, Ramlal Naik L, Dubey AK, Shan HS (2009) State-of-art-review of electrochemical honing of internal cylinders and gears. Proc Inst Mech Eng Part B J Eng Manuf 223:665–681. https://doi.org/10.1243/09544054JEM1381

    Article  Google Scholar 

  8. Mayer JE, Price AH, Purushothaman GK et al (2002) Specific grinding energy causing thermal damage in helicopter gear steel. J Manuf Process 4:142–147. https://doi.org/10.1016/S1526-6125(02)70140-0

    Article  Google Scholar 

  9. Jolivet S, Mezghani S, El Mansori M et al (2017) Experimental study of the contribution of gear tooth finishing processes to friction noise. Tribol Int 115:70–77. https://doi.org/10.1016/j.triboint.2017.05.004

    Article  Google Scholar 

  10. Klocke F, Löpenhaus C, Sari D (2016) Process concepts for gear finish hobbing. Procedia CIRP. Elsevier B.V, Amsterdam, pp 875–880

    Google Scholar 

  11. Tönshoff HK, Friemuth T, Marzenell C (2000) Properties of honed gears during lifetime. CIRP Ann Manuf Technol 49:431–434. https://doi.org/10.1016/S0007-8506(07)62982-5

    Article  Google Scholar 

  12. Wei BY, Deng XZ, Fang ZD (2007) Study on ultrasonic-assisted lapping of gears. Int J Mach Tools Manuf 47:2051–2056. https://doi.org/10.1016/j.ijmachtools.2005.11.003

    Article  Google Scholar 

  13. Yi J, Ding Y, Zhao S et al (2009) A novel technique of polishing gear working surface using PECMP. Int J Precis Eng Manuf 10:57–62. https://doi.org/10.1007/s12541-009-0071-7

    Article  Google Scholar 

  14. Venkatesh G, Sharma AK, Kumar P (2015) On ultrasonic assisted abrasive flow finishing of bevel gears. Int J Mach Tools Manuf 89:29–38. https://doi.org/10.1016/j.ijmachtools.2014.10.014

    Article  Google Scholar 

  15. Kenda J, Pušavec F, Kopac J (2014) Modeling and energy efficiency of abrasive flow machining on tooling industry case study. Procedia CIRP 13:13–18. https://doi.org/10.1016/j.procir.2014.04.003

    Article  Google Scholar 

  16. Ali P, Walia RS, Murtaza Q, Singari RM (2020) Material removal analysis of hybrid EDM-assisted centrifugal abrasive flow machining process for performance enhancement. J Brazilian Soc Mech Sci Eng 42:1–28. https://doi.org/10.1007/s40430-020-02375-6

    Article  Google Scholar 

  17. Ravi Datt Yadav AKS (2019) A novel magnetorheological gear profile finishing with high shape accuracy. Int J Mach Tools Manuf 139:75–92. https://doi.org/10.1016/j.ijmachtools.2019.02.001

    Article  Google Scholar 

  18. Fujisawa Y, Komori M (2015) Surface finishing method for tooth flank of heat-treated surface-hardened small gears using a gear-shaped tool composed of alumina-fiber-reinforced plastic. Precis Eng 39:234–242. https://doi.org/10.1016/j.precisioneng.2014.10.003

    Article  Google Scholar 

  19. Kumar M, Yadav HNS, Kumar A, Das M (2021) An overview of magnetorheological polishing fluid applied in nano-finishing of components. J Micromanufacturing 3:1–19. https://doi.org/10.1177/25165984211008173

    Article  Google Scholar 

  20. Das M, Jain VK, Ghoshdastidar PS (2010) Nano-finishing of stainless-steel tubes using rotational magnetorheological abrasive flow finishing process. Mach Sci Technol 14:365–389. https://doi.org/10.1080/10910344.2010.511865

    Article  Google Scholar 

  21. Shaw MC (1971) A new theory of grinding. In: Proceedings of the institution’s conference on production science in industry, pp 5–4

  22. Stradling AW (1993) The physics of open-gradient dry magnetic separation. Int J Miner Process 39:1–18. https://doi.org/10.1016/0301-7516(93)90048-F

    Article  Google Scholar 

  23. Kumar M, Kumar V, Kumar A et al (2021) CFD analysis of MR fluid applied for finishing of gear in MRAFF process. Mater Today Proc 25:1–7. https://doi.org/10.1016/j.matpr.2021.01.116

    Article  Google Scholar 

  24. Tao R (2001) Super-strong magnetorheological fluids. J Phys Condens Matter, 13. https://doi.org/10.1088/0953-8984/13/50/202

  25. Barman A, Das M (2017) Simulation of Magnetic Field Assisted Finishing (MFAF) process utilizing smart MR polishing tool. J Inst Eng Ser C 98:75–82. https://doi.org/10.1007/s40032-016-0235-z

    Article  Google Scholar 

  26. Panneerselvam PVSK, Haq AN (2021) A comparative assessment in sequential μ-drilling of Hastelloy—X using laser in combination with μ-EDM and μ-ECM. J Brazilian Soc Mech Sci Eng 43:1–19. https://doi.org/10.1007/s40430-021-03068-4

    Article  Google Scholar 

  27. Puri DBMYM (2020) Optimized curved electrical discharge machining-based curvature channel. J Brazilian Soc Mech Sci Eng 42:1–13. https://doi.org/10.1007/s40430-019-2162-4

    Article  Google Scholar 

  28. Ginder JM, Davis LC, Elie LD (1996) Rheology of magnetorheology fluids: models and measurements. Int J Mod Phys 10:11

    Article  Google Scholar 

  29. Khan NA, Sultan F (2018) Numerical analysis for the Bingham—Papanastasiou fluid flow over a rotating disk. J Appl Mech Tech Phys 59:638–644. https://doi.org/10.1134/S0021894418040090

    Article  MathSciNet  Google Scholar 

  30. Huang J, Zhang JQ, Liu JN (2005) Effect of magnetic field on properties of MR fluids. Int J Mod Phys B 19:597–601

    Article  Google Scholar 

  31. Paswan SK, Singh AK (2019) Analysis of surface finishing mechanism in a newly developed rotational magnetorheological honing process for its productivity improvement. Wear 426–427:68–82. https://doi.org/10.1016/j.wear.2019.01.001

    Article  Google Scholar 

  32. Khan DA, Jha S (2018) Synthesis of polishing fluid and novel approach for nanofinishing of copper using ball-end magnetorheological finishing process. Mater Manuf Process 33:1150–1159. https://doi.org/10.1080/10426914.2017.1328112

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Science & Engineering Research Board (SERB), New Delhi, India, for their financial support for project No. EEQ/2017/000597 entitled "Fabrication of Prosthetic Im-plants and further Nanofinishing using Magnetic Field Assisted Finishing (MFAF) Process".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjesh Kumar.

Additional information

Technical Editor: Izabel Fernanda Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Das, M. & Yu, N. Effect of optimum process parameters on material removal in rotational-magnetorheological miniature gear profile polishing (R-MRMGPP) process. J Braz. Soc. Mech. Sci. Eng. 44, 205 (2022). https://doi.org/10.1007/s40430-022-03515-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03515-w

Keywords

Navigation