Skip to main content
Log in

3D printing of trabecular bone-mimetic structures by vat photopolymerization of bovine hydroxyapatite as a potential candidate for scaffolds

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The growing demand for bone-repairing applications has boosted the research for functional biomaterials, their processing and their conformation into bone scaffolds with controlled morphology and dimensions. However, it is still challenging and expensive to manufacture bioceramic scaffolds with complex morphology and tailored porosity. This paper presents the processing of low-cost hydroxyapatite from widely available bovine bones and the development of mimetic bone structures by vat photopolymerization additive manufacturing. First, bovine bones were processed to become reactive bioceramic hydroxyapatite through calcination and milling; a route called ceramization that eliminates any biological risk. Second, hydroxyapatite suspensions were developed with high solid loading (40 vol%), excellent stability (> 30 days) and low viscosity (< 200 mPa.s). Finally, a bovine trabecular bone was microCT scanned and replicated as mimetic bones through additive manufacturing vat photopolymerization using the obtained hydroxyapatite suspension. The printed scaffolds showed adequate mechanical resistance, similar to natural bone, verified by mechanical tests and finite element simulation. Conclusively, the presented methodology results in a promising combination of morphology, mechanical resistance and biocompatibility suited for bone scaffolds, using low-cost bovine-derived hydroxyapatite. Also, the described processing has a high potential for tissue engineering of customized/complex scaffolds for implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Miculescu F, Maidaniuc A, Miculescu M, Dan Batalu N, CatalinCiocoiu R, Voicu ŞI et al (2018) Synthesis and characterization of jellified composites from bovine bone-derived hydroxyapatite and starch as precursors for robocasting. ACS Omega 3:1338–1349. https://doi.org/10.1021/acsomega.7b01855

    Article  Google Scholar 

  2. Vijayavenkataraman S, Zhang L, Zhang S, Fuh JYH, Lu WF (2018) Triply periodic minimal surfaces sheet scaffolds for tissue engineering applications: an optimization approach toward biomimetic scaffold design. ACS Appl Bio Mater 1:259–269. https://doi.org/10.1021/acsabm.8b00052

    Article  Google Scholar 

  3. Song JE, Tripathy N, Lee DH, Park JH, Khang G (2018) Quercetin inlaid silk fibroin/hydroxyapatite scaffold promotes enhanced osteogenesis. ACS Appl Mater Interfaces 10:32955–32964. https://doi.org/10.1021/acsami.8b08119

    Article  Google Scholar 

  4. Eltom A, Zhong G, Muhammad A (2019) Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv Mater Sci Eng. https://doi.org/10.1155/2019/3429527

    Article  Google Scholar 

  5. Cheng A, Schwartz Z, Kahn A, Li X, Shao Z, Sun M et al (2019) Advances in porous scaffold design for bone and cartilage tissue engineering and regeneration. Tissue Eng Part B Rev 25:14–29. https://doi.org/10.1089/ten.teb.2018.0119

    Article  Google Scholar 

  6. Mondal S, Nguyen TP, Pham VH, Hoang G, Manivasagan P, Kim MH et al (2020) Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram Int 46:3443–3455. https://doi.org/10.1016/j.ceramint.2019.10.057

    Article  Google Scholar 

  7. Mondal S, Pal U, Dey A (2016) Natural origin hydroxyapatite scaffold as potential bone tissue engineering substitute. Ceram Int 42:18338–18346. https://doi.org/10.1016/j.ceramint.2016.08.165

    Article  Google Scholar 

  8. Kumar A, Kargozar S, Baino F, Han SS (2019) Additive manufacturing methods for producing hydroxyapatite and hydroxyapatite-based composite scaffolds: a review. Front Mater. https://doi.org/10.3389/fmats.2019.00313

    Article  Google Scholar 

  9. Gul H, Khan M, Khan AS (2020) 3-Bioceramics: types and clinical applications. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102834-6.00003-3

  10. Amin AMM, Ewais EMM (2017) Bioceramic scaffolds. Scaffolds Tissue Eng Mater Technol Clin Appl. https://doi.org/10.5772/intechopen.70194

    Article  Google Scholar 

  11. Shanmugam K, Sahadevan R (2018) Bioceramics: an introductory overview. Elsevier Ltd. doi:https://doi.org/10.1016/B978-0-08-102203-0.00001-9

  12. Shao H, He J, Lin T, Zhang Z, Zhang Y, Liu S (2019) 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering. Ceram Int 45:1163–1170. https://doi.org/10.1016/j.ceramint.2018.09.300

    Article  Google Scholar 

  13. Tang D, Tare RS, Yang LY, Williams DF, Ou KL, Oreffo ROC (2016) Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 83:363–382. https://doi.org/10.1016/j.biomaterials.2016.01.024

    Article  Google Scholar 

  14. Ferrage L, Bertrand G, Lenormand P, Grossin D, Ben-Nissan B (2017) A review of the additive manufacturing (3DP) of bioceramics: Alumina, zirconia (PSZ) and hydroxyapatite. J Aust Ceram Soc 53:11–20. https://doi.org/10.1007/s41779-016-0003-9

    Article  Google Scholar 

  15. Schwentenwein M, Homa J (2015) Additive manufacturing of dense alumina ceramics. Int J Appl Ceram Technol 12:1–7. https://doi.org/10.1111/ijac.12319

    Article  Google Scholar 

  16. Zhang K, He R, Ding G, Feng C, Song W, Fang D (2020) Digital light processing of 3Y-TZP strengthened ZrO2 ceramics. Mater Sci Eng A 774:138768. https://doi.org/10.1016/j.msea.2019.138768

    Article  Google Scholar 

  17. Santoliquido O, Colombo P, Ortona A (2019) Additive Manufacturing of ceramic components by Digital Light Processing: a comparison between the “bottom-up” and the “top-down” approaches. J Eur Ceram Soc 39:2140–2148. https://doi.org/10.1016/j.jeurceramsoc.2019.01.044

    Article  Google Scholar 

  18. Wang JC (2013) A novel fabrication method of high strength alumina ceramic parts based on solvent-based slurry stereolithography and sintering. Int J Precis Eng Manuf 14:485–491. https://doi.org/10.1007/s12541-013-0065-3

    Article  Google Scholar 

  19. Layani M, Wang X, Magdassi S (2018) Novel materials for 3D printing by photopolymerization. Adv Mater 30:1–7. https://doi.org/10.1002/adma.201706344

    Article  Google Scholar 

  20. Li X, Yuan Y, Liu L, Leung YS, Chen Y, Guo Y et al (2020) 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration. Bio Design Manuf 3:15–29. https://doi.org/10.1007/s42242-019-00056-5

    Article  Google Scholar 

  21. Elsayed H, Picicco M, Ferroni L, Gardin C, Zavan B, Bernardo E (2020) Novel bioceramics from digital light processing of calcite/acrylate blends and low temperature pyrolysis. Ceram Int 46:17140–17145. https://doi.org/10.1016/j.ceramint.2020.03.277

    Article  Google Scholar 

  22. Du Y, Hu T, You J, Ye Y, Zhang B, Bao B et al (2021) Study of falling-down-type DLP 3D printing technology for high-resolution hydroxyapatite scaffolds. Int J Appl Ceram Technol. https://doi.org/10.1111/ijac.13915

    Article  Google Scholar 

  23. Zeng Y, Yan Y, Yan H, Liu C, Li P, Dong P et al (2018) 3D printing of hydroxyapatite scaffolds with good mechanical and biocompatible properties by digital light processing. J Mater Sci 53:6291–6301. https://doi.org/10.1007/s10853-018-1992-2

    Article  Google Scholar 

  24. Wang Z, Huang C, Wang J, Zou B (2019) Development of a novel aqueous hydroxyapatite suspension for stereolithography applied to bone tissue engineering. Ceram Int 45:3902–3909. https://doi.org/10.1016/j.ceramint.2018.11.063

    Article  Google Scholar 

  25. Wen Y, Xun S, Haoye M, Baichuan S, Peng C, Xuejian L et al (2017) 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Sci 5:1690–1698. https://doi.org/10.1039/c7bm00315c

    Article  Google Scholar 

  26. Van hede D, Liang B, Anania S, Barzegari M, Verlée B, Nolens G et al (2021) 3D-printed synthetic hydroxyapatite scaffold with in silico optimized macrostructure enhances bone formation in vivo. Adv Funct Mater. https://doi.org/10.1002/adfm.202105002

    Article  Google Scholar 

  27. Kim JW, Yang BE, Hong SJ, Choi HG, Byeon SJ, Lim HK et al (2020) Bone regeneration capability of 3D printed ceramic scaffolds. Int J Mol Sci 21:1–13. https://doi.org/10.3390/ijms21144837

    Article  Google Scholar 

  28. Wang Z, Huang C, Wang J, Zou B, Abbas CA, Wang X (2020) Design and characterization of hydroxyapatite scaffolds fabricated by stereolithography for bone tissue engineering application. Procedia CIRP 89:170–175. https://doi.org/10.1016/j.procir.2020.05.138

    Article  Google Scholar 

  29. Baino F, Magnaterra G, Fiume E, Schiavi A, Tofan LP, Schwentenwein M et al (2021) Digital light processing stereolithography of hydroxyapatite scaffolds with bone-like architecture, permeability, and mechanical properties. J Am Ceram Soc. https://doi.org/10.1111/jace.17843

    Article  Google Scholar 

  30. Tang Q, Li X, Lai C, Li L, Wu H, Wang Y et al (2021) Fabrication of a hydroxyapatite-PDMS microfluidic chip for bone-related cell culture and drug screening. Bioact Mater 6:169–178. https://doi.org/10.1016/j.bioactmat.2020.07.016

    Article  Google Scholar 

  31. Cho YS, Yang S, Choi E, Kim KH, Gwak SJ (2021) Fabrication of a porous hydroxyapatite scaffold with enhanced human osteoblast-like cell response via digital light processing system and biomimetic mineralization. Ceram Int 47:35134–35143. https://doi.org/10.1016/j.ceramint.2021.09.056

    Article  Google Scholar 

  32. Feng C, Zhang K, He R, Ding G, Xia M, Jin X et al (2020) Additive manufacturing of hydroxyapatite bioceramic scaffolds: dispersion, digital light processing, sintering, mechanical properties, and biocompatibility. J Adv Ceram 9:360–373. https://doi.org/10.1007/s40145-020-0375-8

    Article  Google Scholar 

  33. Le Guéhennec L, Van hede D, Plougonven E, Nolens G, Verlée B, De Pauw MC et al (2020) In vitro and in vivo biocompatibility of calcium-phosphate scaffolds three-dimensional printed by stereolithography for bone regeneration. J Biomed Mater Res Part A 108:412–425. https://doi.org/10.1002/jbm.a.36823

    Article  Google Scholar 

  34. Milazzo M, ContessiNegrini N, Scialla S, Marelli B, Farè S, Danti S et al (2019) Additive manufacturing approaches for hydroxyapatite-reinforced composites. Adv Funct Mater 29:1–26. https://doi.org/10.1002/adfm.201903055

    Article  Google Scholar 

  35. Tufail A, Schmidt F, Maqbool M (2020) Three-dimensional printing of hydroxyapatite. Elsevier Ltd. doi:https://doi.org/10.1016/b978-0-08-102834-6.00015-x

  36. Liu Z, Liang H, Shi T, Xie D, Chen R, Han X et al (2019) Additive manufacturing of hydroxyapatite bone scaffolds via digital light processing and in vitro compatibility. Ceram Int 45:11079–11086. https://doi.org/10.1016/j.ceramint.2019.02.195

    Article  Google Scholar 

  37. de Camargo IL, Morais MM, Fortulan CA, Branciforti MC (2021) A review on the rheological behavior and formulations of ceramic suspensions for vat photopolymerization. Ceram Int. https://doi.org/10.1016/j.ceramint.2021.01.031

    Article  Google Scholar 

  38. Parkhomey O, Pinchuk N, Sych O, Tomila T, Kuda O, Tovstonoh H et al (2016) Effect of particle size of starting materials on the structure and properties of biogenic hydroxyapatite/glass composites. Process Appl Ceram 10:1–8. https://doi.org/10.2298/PAC1601001P

    Article  Google Scholar 

  39. Wu X, Lian Q, Li D, Jin Z (2019) Biphasic osteochondral scaffold fabrication using multi-material mask projection stereolithography. Rapid Prototyp J 25:277–288. https://doi.org/10.1108/RPJ-07-2017-0144

    Article  Google Scholar 

  40. Lian Q, Yang F, Xin H, Li D (2017) Oxygen-controlled bottom-up mask-projection stereolithography for ceramic 3D printing. Ceram Int 43:14956–14961. https://doi.org/10.1016/j.ceramint.2017.08.014

    Article  Google Scholar 

  41. Wang JC, Dommati H, Hsieh SJ (2019) Review of additive manufacturing methods for high-performance ceramic materials. Int J Adv Manuf Technol 103:2627–2647. https://doi.org/10.1007/s00170-019-03669-3

    Article  Google Scholar 

  42. Londoño-Restrepo SM, Jeronimo-Cruz R, Millán-Malo BM, Rivera-Muñoz EM, Rodriguez-García ME (2019) Effect of the nano crystal size on the x-ray diffraction patterns of biogenic hydroxyapatite from human, bovine, and porcine bones. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-42269-9

    Article  Google Scholar 

  43. Szcześ A, Hołysz L, Chibowski E (2017) Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci 249:321–330. https://doi.org/10.1016/j.cis.2017.04.007

    Article  Google Scholar 

  44. Leventouri T (2006) Synthetic and biological hydroxyapatites: crystal structure questions. Biomaterials 27:3339–3342. https://doi.org/10.1016/j.biomaterials.2006.02.021

    Article  Google Scholar 

  45. Rahman SU (2020) Hydroxyapatite and tissue engineering. In: Handbook Ionic Substituted Hydroxyapatites, 383–400. doi:https://doi.org/10.1016/b978-0-08-102834-6.00016-1.

  46. Kattimani VS, Kondaka S, Lingamaneni KP (2016) Hydroxyapatite–past, present, and future in bone regeneration. Bone Tissue Regen Insights. https://doi.org/10.4137/btri.s36138

    Article  Google Scholar 

  47. Erbereli R (2017) AVALIAÇÃO DA QUALIDADE ÓSSEA DE BOVINOS. Universidade de São Paulo

  48. ASTMF1185–03 (1993) Standard specification for composition of ceramic hydroxylapatite for surgical 88:1–3

  49. De Camargo IL, Erbereli R, Taylor H, Fortulan CA (2021) 3Y-TZP DLP additive manufacturing: solvent-free slurry development and characterization. Mater Res 24:2–9. https://doi.org/10.1590/1980-5373-MR-2020-0457

    Article  Google Scholar 

  50. Ding G, He R, Zhang K, Xia M, Feng C, Fang D (2020) Dispersion and stability of SiC ceramic slurry for stereolithography. Ceram Int 46:4720–4729. https://doi.org/10.1016/j.ceramint.2019.10.203

    Article  Google Scholar 

  51. Chen Z, Li J, Liu C, Liu Y, Zhu J, Lao C (2019) Preparation of high solid loading and low viscosity ceramic slurries for photopolymerization-based 3D printing. Ceram Int 45:11549–11557. https://doi.org/10.1016/j.ceramint.2019.03.024

    Article  Google Scholar 

  52. Li K, Zhao Z (2017) The effect of the surfactants on the formulation of UV-curable SLA alumina suspension. Ceram Int 43:4761–4767. https://doi.org/10.1016/j.ceramint.2016.11.143

    Article  Google Scholar 

  53. Zhang S, Sha N, Zhao Z (2017) Surface modification of α-Al2O3 with dicarboxylic acids for the preparation of UV-curable ceramic suspensions. J Eur Ceram Soc 37:1607–1616. https://doi.org/10.1016/j.jeurceramsoc.2016.12.013

    Article  Google Scholar 

  54. Zhang K, Xie C, Wang G, He R, Ding G, Wang M et al (2019) High solid loading, low viscosity photosensitive Al2O3 slurry for stereolithography based additive manufacturing. Ceram Int 45:203–208. https://doi.org/10.1016/j.ceramint.2018.09.152

    Article  Google Scholar 

  55. Xing H, Zou B, Lai Q, Huang C, Chen Q, Fu X et al (2018) Preparation and characterization of UV curable Al2O3 suspensions applying for stereolithography 3D printing ceramic microcomponent. Powder Technol 338:153–161. https://doi.org/10.1016/j.powtec.2018.07.023

    Article  Google Scholar 

  56. Zhou M, Liu W, Wu H, Song X, Chen Y, Cheng L et al (2016) Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography–Optimization of the drying and debinding processes. Ceram Int 42:11598–11602. https://doi.org/10.1016/j.ceramint.2016.04.050

    Article  Google Scholar 

  57. Hinczewski C, Corbel S, Chartier T (1998) Ceramic suspensions suitable for stereolithography. J Eur Ceram Soc 18:583–590. https://doi.org/10.1016/s0955-2219(97)00186-6

    Article  Google Scholar 

  58. de Camargo IL, Erbereli R, Lovo JFP, Fortulan CA (2020) DLP 3D printer with innovative recoating system. In: Brazilian Technology Symposium 1–8

  59. de Camargo IL, Erbereli R, Lovo JFP, Fortulan CA (2021) DLP Additive manufacturing of ceramics : photosensitive parameters , thermal analysis , post-processing , and parts

  60. Ronca A, D’Amora U, Raucci MG, Lin H, Fan Y, Zhang X et al (2018) A combined approach of double network hydrogel and nanocomposites based on hyaluronic acid and poly(ethylene glycol) diacrylate blend. Materials (Basel). https://doi.org/10.3390/ma11122454

    Article  Google Scholar 

  61. Johansson E, Lidström O, Johansson J, Lyckfeldt O, Adolfsson E (2017) Influence of resin composition on the defect formation in alumina manufactured by stereolithography. Materials (Basel). https://doi.org/10.3390/ma10020138

    Article  Google Scholar 

  62. Sokolov PS, Komissarenko DA, Dosovitskii GA, Shmeleva IA, Slyusar IV, Dosovitskii AE (2018) Rheological properties of zirconium oxide suspensions in acrylate monomers for use in 3D printing. Glas Ceram 75:55–59. https://doi.org/10.1007/s10717-018-0028-3

    Article  Google Scholar 

  63. ASTM C373–18 (2018) Standard test methods for determination of water absorption and associated properties by vacuum method for pressed ceramic tiles and glass tiles and boil method for extruded ceramic tiles and non-tile fired ceramic whiteware products 1–7. doi:https://doi.org/10.1520/C0373-18.2

  64. ASTMC1424−15 (2021) Standard test method for monotonic compressive strength of advanced ceramics at 20211–14. doi:https://doi.org/10.1520/C1424-15R19.ization

  65. Ravaglioli A, Krajewski A (1991) Bioceramics. doi:https://doi.org/10.1007/978-1-84882-664-9_3

  66. Wu Z, Liu W, Wu H, Huang R, He R, Jiang Q et al (2018) Research into the mechanical properties, sintering mechanism and microstructure evolution of Al2O3-ZrO2 composites fabricated by a stereolithography-based 3D printing method. Mater Chem Phys 207:1–10. https://doi.org/10.1016/j.matchemphys.2017.12.021

    Article  Google Scholar 

  67. Griffith ML, Halloran FW (1996) Freeform fabrication of ceramics via stereolithography. J Am Ceram Soc 79:2601–2608

    Article  Google Scholar 

  68. Pfaffinger M, Hartmann M, Schwentenwein M, Stampfl J (2017) Stabilization of tricalcium phosphate slurries against sedimentation for stereolithographic additive manufacturing and influence on the final mechanical properties. Int J Appl Ceram Technol 14:499–506. https://doi.org/10.1111/ijac.12664

    Article  Google Scholar 

  69. Wei Y, Zhao D, Cao Q, Wang J, Wu Y, Yuan B et al (2020) Stereolithography-based additive manufacturing of high-performance osteoinductive calcium phosphate ceramics by a digital light-processing system. ACS Biomater Sci Eng 6:1787–1797. https://doi.org/10.1021/acsbiomaterials.9b01663

    Article  Google Scholar 

  70. Sudan K, Singh P, Gökçe A, Balla VK, Kate KH (2020) Processing of hydroxyapatite and its composites using ceramic fused filament fabrication (CF3). Ceram Int 46:23922–23931. https://doi.org/10.1016/j.ceramint.2020.06.168

    Article  Google Scholar 

  71. Yao Y, Qin W, Xing B, Sha N, Jiao T, Zhao Z (2021) High performance hydroxyapatite ceramics and a triply periodic minimum surface structure fabricated by digital light processing 3D printing. J Adv Ceram 10:39–48. https://doi.org/10.1007/s40145-020-0415-4

    Article  Google Scholar 

  72. Misch CE, Qu Z, Bidez MW (1999) Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg 57:700–706. https://doi.org/10.1016/S0278-2391(99)90437-8

    Article  Google Scholar 

  73. Lim HK, Hong SJ, Byeon SJ, Chung SM, On SW, Yang BE et al (2020) 3D-printed ceramic bone scaffolds with variable pore architectures. Int J Mol Sci 21:1–12. https://doi.org/10.3390/ijms21186942

    Article  Google Scholar 

Download references

Acknowledgements

The present work was carried out with the support of the Coordination of Improvement of Superior—Brazil (CAPES)—Financing Code 001 and the São Paulo Research Foundation (FAPESP), grant #2020/16012-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério Erbereli.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Technical Editor: Adriano Fagali de Souza.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erbereli, R., de Camargo, I.L., Morais, M.M. et al. 3D printing of trabecular bone-mimetic structures by vat photopolymerization of bovine hydroxyapatite as a potential candidate for scaffolds. J Braz. Soc. Mech. Sci. Eng. 44, 170 (2022). https://doi.org/10.1007/s40430-022-03468-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03468-0

Keywords

Navigation