Skip to main content
Log in

Uniaxial strain ratcheting of steel butt-welded joints after multiple-repair welding

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Repair welds are frequently used to fix defects in the manufacturing process, remedy in-service degradations, and for the life extension of ageing steel components and pressure vessels. Nevertheless, repair welds may exert detrimental impacts on the integrity of these structures in the long term. The primary focus of the current study is on the vee-and-weld repairs made in girth welds of steel pipes/components. The subject has not been the focal point for previous researchers. The hysteresis responses of specimens with original welds, partial and full repair welds and repeated repair welds were studied. Specimens with full repair welds featured apparent strain softening under strain cycling. Specimens with original or partial repair welds demonstrated a relatively stable strain cycling behaviour. Under stress cycling, the repair welding accelerated the strain ratcheting and reduced the number of cycles to failure. The effects varied depending on the extent of the repair (full or partial) and its repetition (single or double).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Rahmatfam A, Zehsaz M, Chakherlou TN (2019) Ratcheting assessment of pressurized pipelines under cyclic axial loading: Experimental and numerical investigations. Int J Press Vessels Pip 176:103970. https://doi.org/10.1016/j.ijpvp.2019.103970

    Article  Google Scholar 

  2. Zeinoddini M, Parke GAR (2011) Elastic shakedown and adaptation of the response in laterally impacted steel tubes. Int J Damage Mech 20(3):400–422. https://doi.org/10.1177/1056789509359675

    Article  Google Scholar 

  3. Zeinoddini M, Peykanu M (2011) Strain ratcheting of steel tubulars with a rectangular defect under axial cycling: A numerical modeling. J Constr Steel Res 67(12):1872–1883. https://doi.org/10.1016/j.jcsr.2011.05.010

    Article  Google Scholar 

  4. Zeinoddini M, Mo’tamedi M, Gharebaghi SA, Parke GAR (2016) On the ratcheting response of circular steel pipes subject to cyclic inelastic bending: A closed-form analytical solution. Int J Mech Sci 117:243–257. https://doi.org/10.1016/j.ijmecsci.2016.09.004

    Article  Google Scholar 

  5. Rösler J, Harders H, Bäker M (2007) Mechanical behaviour of engineering materials: metals, ceramics, polymers, and composites. Springer Science & Business Media, Berlin

    Google Scholar 

  6. Boiler ASME, Code PV (2007) Section III and VIII. American Society of Mechanical Engineers, New York

    Google Scholar 

  7. EN 2002. 13445–3: Unfired pressure vessels - part 3. European Committee for Standardisation.

  8. RCC-MR, 2007. Design and construction rules for mechanical components of nuclear installations. AFCEN: Paris, France

  9. R5, 1990. Assessment procedure for the high temperature response of structures. Nuclear Electric plc.

  10. Alonso-Marroquin F, Herrmann HJ (2004) Ratcheting of granular materials. Phys Rev Lett 92(5):054301. https://doi.org/10.1103/PhysRevLett.92.054301

    Article  Google Scholar 

  11. Zeinoddini M, Parke GAR, Sadrossadat SM (2011) Free-spanning submarine pipeline response to severe ground excitations: water-pipeline interactions. J Pipeline Syst Eng Pract 3(4):135–149. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000098

    Article  Google Scholar 

  12. Naghipour M, Ezzati M, Elyasi M (2018) Analysis of high-strength pressurized pipes (API-5L-X80) with local gouge and dent defect. Appl Ocean Res 78:33–49. https://doi.org/10.1016/j.apor.2018.06.009

    Article  Google Scholar 

  13. Zeinoddini M, Arabzadeh H, Ezzati M, Parke GAR (2013) Response of submarine pipelines to impacts from dropped objects: Bed flexibility effects. Int J Impact Eng 62:129–141. https://doi.org/10.1016/j.ijimpeng.2013.06.010

    Article  Google Scholar 

  14. Arabzadeh H, Zeinoddini M (2013) A closed-form solution for lateral indentation of pressurized pipes resting on a flexible bed. Int J Mech Sci 75:189–199. https://doi.org/10.1016/j.ijmecsci.2013.07.003

    Article  Google Scholar 

  15. Azadeh M, Taheri F (2014) Ratcheting response of dented pipes under monotonic and cyclic axial loadings. J Strain Anal Eng Design 49(2):122–132. https://doi.org/10.1177/0309324713494197

    Article  Google Scholar 

  16. Zeinoddini M, Ezzati M, Parke GAR (2015) Plastic buckling, wrinkling and collapse behaviour of dented X80 steel line pipes under axial compression. J Loss Prev Process Ind 38:67–78. https://doi.org/10.1016/j.jlp.2015.09.002

    Article  Google Scholar 

  17. Guo B, Song S, Ghalambor A, Chacko J (2005) Offshore pipelines. Elsevier, Amsterdam

    Google Scholar 

  18. Ezzati M, Naghipour M, Zeinoddini M, Zandi AP, Elyasi M (2021) Strain ratcheting failure of dented steel submarine pipes under combined internal pressure and asymmetric inelastic cycling. Ocean Eng 219:108336. https://doi.org/10.1016/j.oceaneng.2020.108336

    Article  Google Scholar 

  19. Kang G, Dong Y, Wang H, Liu Y, Cheng X (2010) Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation. Mater Sci Eng, A 527(21–22):5952–5961. https://doi.org/10.1016/j.msea.2010.06.020

    Article  Google Scholar 

  20. Bree J (1967) Elastic-plastic behaviour of thin tubes subjected to internal pressure and intermittent high-heat fluxes with application to fast-nuclear-reactor fuel elements. J Strain Anal 2(3):226–238. https://doi.org/10.1243/03093247V023226

    Article  Google Scholar 

  21. Chen G, Chen X, Niu CD (2006) Uniaxial ratcheting behavior of 63Sn37Pb solder with loading histories and stress rates. Mater Sci Eng, A 421(1–2):238–244. https://doi.org/10.1016/j.msea.2006.01.052

    Article  Google Scholar 

  22. Chiou YC, Jen YM, Weng WK (2011) Experimental investigation on the effect of tensile pre-strain on ratcheting behavior of 430 Stainless Steel under fully-reversed loading condition. Eng Fail Anal 18(2):766–775. https://doi.org/10.1016/j.engfailanal.2010.12.008

    Article  Google Scholar 

  23. Paul SK, Sivaprasad S, Dhar S, Tarafder S (2010) True stress control asymmetric cyclic plastic behavior in SA333 C-Mn steel. Int J Press Vessels Pip 87(8):440–446. https://doi.org/10.1016/j.ijpvp.2010.07.008

    Article  Google Scholar 

  24. Yoshida F (1990) Uniaxial and biaxial creep-ratcheting behavior of SUS304 stainless steel at room temperature. Int J Press Vessels Pip 44(2):207–223. https://doi.org/10.1016/0308-0161(90)90130-A

    Article  Google Scholar 

  25. Kobayashi M, Ohno N, Igari T (1998) Ratchetting characteristics of 316FR steel at high temperature, part II: analysis of thermal ratchetting induced by spatial variation of temperature. Int J Plast 14(4–5):373–390. https://doi.org/10.1016/S0749-6419(98)00010-2

    Article  MATH  Google Scholar 

  26. Kang G, Gao Q, Cai L, Yang X, Sun Y (2001) Experimental study on uniaxial and multiaxial strain cyclic characteristics and ratcheting of 316L stainless steel. J Mater Sci Technol 17(2):219–223

    Google Scholar 

  27. Kim KS, Jiao R, Chen X, Sakane M (2009) Ratcheting of stainless steel 304 under multiaxial nonproportional loading. J Pressure Vessel Technol 131(2):021405. https://doi.org/10.1115/1.3027498

    Article  Google Scholar 

  28. Kang GZ, Li YG, Zhang J, Sun YF, Gao Q (2005) Uniaxial ratcheting and failure behaviors of two steels. Theoret Appl Fract Mech 43(2):199–209. https://doi.org/10.1016/j.tafmec.2005.01.005

    Article  Google Scholar 

  29. Shit J, Dhar S, Acharyya SK, Goyal S (2012) Modeling of uniaxial ratchetting behavior of SA333 carbon manganese steel. Int J Pressure Vessels Pip 92:96–105. https://doi.org/10.1016/j.ijpvp.2011.11.007

    Article  Google Scholar 

  30. Kang G, Gao Q, Yang X (2002) Experimental study on the cyclic deformation and plastic flow of U71Mn rail steel. Int J Mech Sci 44(8):1647–1663. https://doi.org/10.1016/S0020-7403(02)00062-0

    Article  Google Scholar 

  31. Lee HY, Kim JB, Lee JH (2003) Thermal ratchetting deformation of a 316L stainless steel cylindrical structure under an axial moving temperature distribution. Int J Press Vessels Pip 80(1):41–48. https://doi.org/10.1016/S0308-0161(02)00136-9

    Article  Google Scholar 

  32. Koo S, Han J, Marimuthu KP, Lee H (2019) Determination of Chaboche combined hardening parameters with dual backstress for ratcheting evaluation of AISI 52100 bearing steel. Int J Fatigue 122:152–163. https://doi.org/10.1016/j.ijfatigue.2019.01.009

    Article  Google Scholar 

  33. Varvani-Farahani A, Nayebi A (2018) Ratcheting in pressurized pipes and equipment: A review on affecting parameters, modelling, safety codes, and challenges. Fatigue Fract Eng Mater Struct 41(3):503–538. https://doi.org/10.1111/ffe.12775

    Article  Google Scholar 

  34. Hübel H (1996) Basic conditions for material and structural ratcheting. Nucl Eng Design 162(1):55–65. https://doi.org/10.1016/0029-5493(95)01136-6

    Article  Google Scholar 

  35. Vega OE, Hallen JM, Villagomez A, Contreras A (2008) Effect of multiple repairs in girth welds of pipelines on the mechanical properties. Mater Charact 59(10):1498–1507. https://doi.org/10.1016/j.matchar.2008.01.011

    Article  Google Scholar 

  36. Puliyaneth M, Barbera D, Chen H, Xuan F (2018) Study of ratchet limit and cyclic response of welded pipe. Int J Press Vessels Pip 168:49–58. https://doi.org/10.1016/j.ijpvp.2018.09.004

    Article  Google Scholar 

  37. Nascimento MP, Voorwald HJ (2010) Considerations on corrosion and weld repair effects on the fatigue strength of a steel structure critical to the flight-safety. Int J Fatigue 32(7):1200–1209. https://doi.org/10.1016/j.ijfatigue.2009.12.017

    Article  Google Scholar 

  38. Rodriguez-Sanchez JE, Dover WD, Brennan FP (2004) Application of short repairs for fatigue life extension. Int J Fatigue 26(4):413–420. https://doi.org/10.1016/j.ijfatigue.2003.07.002

    Article  Google Scholar 

  39. Song S, and Dong P (2014) Residual stresses in weld repairs and mitigation by design. In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering (pp. V005T03A038-V005T03A038). American Society of Mechanical Engineers. https://doi.org/10.1115/OMAE2014-24547

  40. Song S, Dong P (2017) Residual stresses at weld repairs and effects of repair geometry. Sci Technol Weld Joining 22(4):265–277. https://doi.org/10.1080/13621718.2016.1224544

    Article  Google Scholar 

  41. American Petroleum Institute (2005) API Standard 1104: welding of pipelines and related facilities. American Petroleum Institute.

  42. Geisler III R, Specials Certification Engineer and AWS Certified Welding Inspector, regisgeisler@lincolnelectric.com, The Lincoln Electric Company: www.lincolnelectric.com.

  43. Islam N, and Hassan T (2017). Influence of initial and welding residual stresses on low cycle fatigue and ratcheting response simulations of elbows. In Pressure Vessels and Piping Conference (Vol. 58035, p. V008T08A031). American Society of Mechanical Engineers. https://doi.org/10.1115/PVP2017-65847

  44. Song YJ (2009). Ratcheting fatigue failure of welded stainless steel pipe and dislocation microstructure. http://www.lib.ncsu.edu/resolver/1840.16/2463

  45. Su H, Li J, Lai Q, Pun CL, Mutton P, Kan Q, Yan W (2020) Ratcheting behaviour of flash butt welds in heat-treated hypereutectoid steel rails under uniaxial and biaxial cyclic loadings. Int J Mech Sci 176:105539. https://doi.org/10.1016/j.ijmecsci.2020.105539

    Article  Google Scholar 

  46. Su H, Pun CL, Mutton P, Kan Q, Kang G, Yan W (2021) Numerical study on the ratcheting performance of rail flash butt welds in heavy haul operations. Int J Mech Sci 199:106434. https://doi.org/10.1016/j.ijmecsci.2021.106434

    Article  Google Scholar 

  47. Bae WG, Chang KH, Lee CH (2016) Progressive inelastic deformation of a girth-welded stainless steel pipe under internal pressure and cyclic bending. Ocean Eng 128:81–93. https://doi.org/10.1016/j.oceaneng.2016.10.027

    Article  Google Scholar 

  48. American Society for Testing and Materials (2014) ASTM A370: standard test methods and definitions for mechanical testing of steel products. West Conshohocken: ASTM.

  49. AWS A (2008) D1. 1. Structural Welding Code-Steel. American Welding Society, Miami, USA.

  50. Wen M, Li H, Yu D, Chen G, Chen X (2013) Uniaxial ratcheting behavior of Zircaloy-4 tubes at room temperature. Mater Des 46:426–434. https://doi.org/10.1016/j.matdes.2012.10.049

    Article  Google Scholar 

  51. Cowper GR, and Symonds PS (1957) Strain-hardening and strain-rate effects in the impact loading of cantilever beams. Brown Univ Providence Ri

  52. Jones N (2011) Structural impact. Cambridge University Press, Cambridge

    Book  Google Scholar 

  53. Yang H, Yang X, Varma AH, Zhu Y (2019) Strain-rate effect and constitutive models for Q550 high-strength structural steel. J Mater Eng Perform 28(11):6626–6637. https://doi.org/10.1007/s11665-019-04431-2

    Article  Google Scholar 

  54. Zeinoddini M, Peykanu M, Varshosaz M, Ezzati M, Zakavi SJ (2015) Ratcheting behaviour of corroded steel tubes under uniaxial cycling: an experimental investigation. J Constr Steel Res 113:234–246. https://doi.org/10.1016/j.jcsr.2015.06.007

    Article  Google Scholar 

  55. Zeinoddini M, Ezzati M, Fakheri J (2014) Uniaxial strain ratcheting behavior of dented steel tubular: An experimental study. Eng Fail Anal 44:202–216. https://doi.org/10.1016/j.engfailanal.2014.05.016

    Article  Google Scholar 

  56. Zeinoddini M, Mo’tamedi M, Zandi AP, Talebi M, Shariati M, Ezzati M (2017) On the ratcheting of defective low-alloy, high-strength steel pipes (API-5L X80) under cyclic bending: An experimental study. Int J Mech Sci 130:518–533. https://doi.org/10.1016/j.ijmecsci.2017.06.036

    Article  Google Scholar 

  57. Mo’tamedi M, Zeinoddini M, Elchalakani M (2018) A closed-form analytical solution for the ratcheting response of steel tubes with wall-thinning under inelastic symmetric constant amplitude cyclic bending. Thin-Walled Struct 132:558–573. https://doi.org/10.1016/j.tws.2018.08.005

    Article  Google Scholar 

  58. Saha MK, Sadhu S, Ghosh P, Mondal A, Hazra R, and Das S (2020) Dependency of bead geometry formation during weld deposition of 316 stainless steel over constructional steel plate. In Advanced Engineering Optimization Through Intelligent Techniques (pp. 417–429). Springer, Singapore

  59. Kang G, Liu Y, Dong Y, Gao Q (2011) Uniaxial ratcheting behaviors of metals with different crystal structures or values of fault energy: macroscopic experiments. J Mater Sci Technol 27(5):453–459. https://doi.org/10.1016/S1005-0302(11)60090-X

    Article  Google Scholar 

  60. Mahato JK, De PS, Kundu A, and Chakraborti PC (2020) Role of stacking fault energy on symmetric and asymmetric cyclic deformation behavior of FCC metals. In Structural Integrity Assessment (pp. 691–702). Springer, Singapore

  61. Petersmann M, Antretter T, Cailletaud G, Sannikov A, Ehlenbröker U, Fischer FD (2019) Unification of the non-linear geometric transformation theory of martensite and crystal plasticity-Application to dislocated lath martensite in steels. Int J Plast 119:140–155. https://doi.org/10.1016/j.ijplas.2019.02.016

    Article  Google Scholar 

  62. Sarma VS, Wang J, Jian WW, Kauffmann A, Conrad H, Freudenberger J, Zhu YT (2010) Role of stacking fault energy in strengthening due to cryo-deformation of FCC metals. Mater Sci Eng, A 527(29–30):7624–7630. https://doi.org/10.1016/j.msea.2010.08.015

    Article  Google Scholar 

  63. Talebi M, Zeinoddini M, Mo’tamedi M, Zandi AP (2018) Collapse of HSLA steel pipes under corrosion exposure and uniaxial inelastic cycling. J Constr Steel Res 144:253–269. https://doi.org/10.1016/j.jcsr.2018.02.003

    Article  Google Scholar 

  64. Kang GZ, Kan QH, Zhang J (2009) Experimental study on the uniaxial cyclic deformation of 25CDV4. 11 steel. Journal of Materials Sciences and Technology, 21(01):5–9. https://jmst.org/EN/Y2005/V21/I01/5

  65. Paul SK, Sivaprasad S, Dhar S, Tarafder S (2010) Ratcheting and low cycle fatigue behavior of SA333 steel and their life prediction. J Nucl Mater 401(1–3):17–24. https://doi.org/10.1016/j.jnucmat.2010.03.014

    Article  Google Scholar 

  66. Jiang Y, Zhang J (2008) Benchmark experiments and characteristic cyclic plasticity deformation. Int J Plast 24(9):1481–1515. https://doi.org/10.1016/j.ijplas.2007.10.003

    Article  MATH  Google Scholar 

  67. Das D, Chakraborti PC (2011) Effect of stress parameters on ratcheting deformation stages of polycrystalline OFHC copper. Fatigue Fract Eng Mater Struct 34(9):734–742. https://doi.org/10.1111/j.1460-2695.2011.01570.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support received from the Iran National Science Foundation (INSF-91001149) and Mr A.P. Zandi from Tazand Company for providing the measuring devices. The authors also express their gratitude to two anonymous reviewers for their highly perceptive and constructive comments on the earlier version of this paper. Last but not least, the authors extend their sincere appreciation to Mr. Mohammad Ezzati for his helpful and constructive comments on the edit of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ezzati.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnavaz, S., Zeinoddini, M., Ezzati, M. et al. Uniaxial strain ratcheting of steel butt-welded joints after multiple-repair welding. J Braz. Soc. Mech. Sci. Eng. 44, 69 (2022). https://doi.org/10.1007/s40430-022-03363-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03363-8

Keywords

Navigation