Skip to main content

Advertisement

Log in

Optimization of NREL phase VI wind turbine by introducing blade sweep, using CFD integrated with genetic algorithms

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This work presents an optimization procedure through the variation of the sweep curve of a two bladed Horizontal Axis Wind Turbine (HAWT), previously tested by the National Renewable Energy Laboratory (NREL). The steady-state simulation was conducted using unstructured mesh on the whole domain, using a MRF around the rotor. The turbulence model was the \(k-\omega \ SST\). Moreover, a grid independence study was carried out, as well as a validation with experimental data from NREL Phase VI, using the moment as the control variable, whereby it was concluded that the numerical method was validated for a range of wind speeds from 5 m/s to 15 m/s. In addition, an optimization routine was made, aiming to maximize the power coefficient (\(C_{p}\)) of the blades, by means of introducing the sweep curve on the blades. The parameters of sweep, such as radial position of sweep start, maximum displacement of the tip and the exponent of the curve, were chosen as the design variables, and a NSGA-II algorithm was used to do the optimization. Two optimized geometries of the blade were obtained, for the point of maximum \(C_{p}\) one with forward sweep with an increase of 4.49% on the power coefficient; and another one with backward sweep, with an increase of 5.62% on the power coefficient. Moreover, both geometries yielded greater power coefficients for all wind speeds between 10 m/s and 15 m/s, reaching a maximum of 18% increase in the power coefficient, for a wind speed of 14 m/s, maintaining the robustness of the stall regulated HAWT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

Notes

  1. https://www.reuters.com/article/us-climate-change-un-colombia/latin-america-pledges-70-renewable-energy-surpassing-eu-colombia-minister-idUSKBN1WA26Y.

  2. https://ieefa.org/france-greece-bulgaria-raise-their-2030-national-renewable-energy-targets/.

References

  1. da Silva E, Filho NM, Camacho R (2012) Metamodelling approach using radial basis functions, stochastic search algorithm and cfd - aplication to blade cascade design. International Journal of Mathematical Modelling and Numerical Optimization 3:82–97. https://doi.org/10.1504/ijmmno.2012.044715

    Article  MATH  Google Scholar 

  2. Abe K, Nishida M, Sakurai A, Ohya Y, Kihara H, Wada E, Sato K (2005) Experimental and numerical investigations of flow fields behind a small wind turbine with a flanged diffuser. J Wind Eng Ind Aerodyn 93(12):951–970. https://doi.org/10.1016/j.jweia.2005.09.003

    Article  Google Scholar 

  3. Amano R, Avdeev I, Malloy R, Shams MZ (2013) Power, structural and noise performance tests on different wind turbine rotor blade designs. Int J Sustain Energ 32:78–95. https://doi.org/10.1080/14786451.2011.599491

    Article  Google Scholar 

  4. Ashwill T, Kanaby G, Jackson K, Zuteck M (2010) Development of the swept twist adaptive rotor (STAR) blade https://doi.org/10.2514/6.2010-1582

  5. Burton T, Sharpe D, Jenkins N, Bossanyi E (2001) Wind energy handbook. John Wiley and Sons LTD, New Jersey

    Book  Google Scholar 

  6. Camacho R, Barbosa J (2008) The boundary element method applied to forced convection heat problems. Int Commun Heat Mass Transf 35:1–11. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2007.08.012

    Article  Google Scholar 

  7. Castilho L, Camacho RGR, da Silva E (2016) Optimized design of linear cascades for turbomachinery applications. J Braz Soc Mech Sci Eng 38:813–825. https://doi.org/10.1007/s40430-015-0338-0

    Article  Google Scholar 

  8. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  9. Diveux T, Sebastian P, Bernard D, Puiggali JR, Grandidier JY (2001) Horizontal axis wind turbine systems: optimization using genetic algorithms. Wind Energy 4:1–8. https://doi.org/10.14710/we.51

    Article  Google Scholar 

  10. Elfarra M, Sezer-Uzol N, Akmandor I (2014) NREL VI rotor blade: numerical investigation and winglet design and optimization using CFD. Wind Energy. https://doi.org/10.1002/we.1593

    Article  Google Scholar 

  11. Fischer GR, Kipouros T, Savill AM (2014) Multi-objective optimisation of horizontal axis wind turbine structure and energy production using aerofoil and blade properties as design variables. Renew Energy 62:506–515. https://doi.org/10.1016/j.renene.2013.08.009

    Article  Google Scholar 

  12. Hand M, Simms D, Fingersh L, Jager D, Cotrell J, SSchreck, Larwood S, (2001) Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns. Tech. rep, National Renewable Energy Laboratory

  13. IRENA (2019) Renewable power generation costs in 2019. Tech. rep, International Renewable Energy Agency, Abu Dhabi

    Google Scholar 

  14. Kaya MN, Kose F, Ingham D, Ma L, Pourkashanian M (2018) Aerodynamic performance of a horizontal axis wind turbine with forward and backward swept blades. J Wind Eng Ind Aerodyn 176:166–173. https://doi.org/10.1016/j.jweia.2018.03.023

    Article  Google Scholar 

  15. Khalafallah M, Ahmed A, Emam M (2017) CFD study of some factors affecting performance of HAWT with swept blades. Int J Sustain Energ 36(5):489–501. https://doi.org/10.1080/14786451.2015.1053394

    Article  Google Scholar 

  16. Krogstad PÃ, Lund J (2012) An experimental and numerical study of the performance of a model turbine. Wind Energy 15(3):443–457. https://doi.org/10.1002/we.482

    Article  Google Scholar 

  17. Lanzafame R, Mauro S, Messina M (2013) Wind turbine CFD modeling using a correlation-based transitional model. Renew Energy 52:31–39. https://doi.org/10.1016/j.renene.2012.10.007

    Article  Google Scholar 

  18. Larwood S, van Dam C, Schow D (2014) Design studies of swept wind turbine blades. Renew Energy 71:563–571. https://doi.org/10.1016/j.renene.2014.05.050

    Article  Google Scholar 

  19. Make M, Vaz G (2015) Analyzing scaling effects on offshore wind turbines using CFD. Renew Energy 83:1326–1340. https://doi.org/10.1016/j.renene.2015.05.048

    Article  Google Scholar 

  20. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605

    Article  Google Scholar 

  21. Mo JO, Lee YH (2012) Cfd investigation on the aerodynamic characteristics of a small-sized wind turbine of NREL Phase VI operating with a stall-regulated method. J Mech Sci Technol. https://doi.org/10.1007/s12206-011-1014-7

    Article  Google Scholar 

  22. Mortazavi SM, Soltani MR, Motieyan H (2015) A pareto optimal multi-objective optimization for a horizontal axis wind turbine blade airfoil sections utilizing exergy analysis and neural networks. J Wind Eng Ind Aerodyn 136:62–72. https://doi.org/10.1016/j.jweia.2014.10.009

    Article  Google Scholar 

  23. Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transf 15:1787–1806. https://doi.org/10.1016/0017-9310(72)90054-3

    Article  MATH  Google Scholar 

  24. Ramirez Camacho RG, Manzanares Filho N (2005) A source wake model for cascades of axial flow turbomachines. J Braz Soc Mech Sci Eng 27:288–299

    Article  Google Scholar 

  25. REN21 (2019) What are the current trends in renewable energy\(\bullet \). https://www.ren21.net/what-are-the-current-trends-in-renewable-energy

  26. REN21 (2020) Renewables 2020 global status report. Tech. rep., REN21 Secretariat

  27. Rezek T, Camacho R, Filho NM, Limacher E (2021) Design of a hydrokinetic turbine diffuser based on optimization and computational fluid dynamics. Appl Ocean Res 107:102484

    Article  Google Scholar 

  28. Sarmiento ALE, Camacho RGR, de Oliveira W, Velásquez EIG, Murthi M, Gautier NJD (2021) Design and off-design performance improvement of a radial-inflow turbine for orc applications using metamodels and genetic algorithm optimization. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2020.116197

    Article  Google Scholar 

  29. Shen X, Yang H, Chen J, Zhu X, Du Z (2016) Aerodynamic shape optimization of non-straight small wind turbine blades. Energy Convers Manage 119:266–278. https://doi.org/10.1016/j.enconman.2016.04.008

    Article  Google Scholar 

  30. Verelst D, Larsen T (2010) Load consequences when sweeping blades - A case study of a 5MW pitch controlled wind turbine. Tech. rep., Risø-R-1724

  31. Versteeg H, Malalasekera W (2007) An introduction to computational fluid dynamics. Pearson Education Limited, London

    Google Scholar 

  32. White FM (2011) Fluid mechanics. McGraw Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo M. G. Dias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: André Cavalieri.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, M.M.G., Ramirez Camacho, R.G. Optimization of NREL phase VI wind turbine by introducing blade sweep, using CFD integrated with genetic algorithms. J Braz. Soc. Mech. Sci. Eng. 44, 52 (2022). https://doi.org/10.1007/s40430-021-03357-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03357-y

Keywords

Navigation