Skip to main content
Log in

Analysis and application of the modified smoothed particle hydrodynamics method to simulate cavitating flow

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

A modified numerical algorithm is proposed to simulate cavitating flow in a convergent–divergent nozzle based on the Smoothed Particle Hydrodynamics (SPH) method. Several modifications were applied to the standard SPH equations to make it capable to model the growth, convection, and collapse of the cavitation phenomenon. As a multiphase problem with the large density ratio, some treatments were applied to satisfy the conservation of mass/momentum and guarantee the stability of the algorithm at the liquid–vapor interfaces. The pressure filter was applied to detect the cavitated particles which have pressure below the vapor pressure of the main liquid. Since SPH is a Lagrangian particle-based method, no transitional phase is defined, and sudden phase change is considered between the liquid and vapor phases. First, one of the multiphase benchmark problems was simulated to verify the functionality of the proposed SPH. Then, the simulation of cavitation growth in the convergent–divergent nozzle was investigated by comparing the results with those of commonly used grid-based methods. As a result, the modified form of the SPH method showed a desirable capability in detecting cavitated regions and modeling cavitating fluid as a multi-phase medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Trulev AV, Trulev YV (1997) Theoretical fundamentals of cavitation in turbomachines. Chem Pet Eng 33:189–195. https://doi.org/10.1007/BF02396045

    Article  Google Scholar 

  2. Shi Y, Pan G, Huang Q, Du X (2015) Numerical simulation of cavitation characteristics for pump-jet propeller. J Phys Conf Ser 640:12035. https://doi.org/10.1088/1742-6596/640/1/012035

    Article  Google Scholar 

  3. Dular M, Bachert R, Stoffel B, Širok B (2005) Experimental evaluation of numerical simulation of cavitating flow around hydrofoil. Eur J Mech 24:522–538

    Article  Google Scholar 

  4. Blessing M, König G, Krüger C, Michels U, Schwarz V (2003) Analysis of flow and cavitation phenomena in diesel injection nozzles and its effects on spray and mixture formation. SAE Trans 1694–1706. https://doi.org/10.4271/2003-01-1358

  5. Yuan W, Sauer J, Schnerr GH (2001) Modeling and computation of unsteady cavitation flows in injection nozzles. Mécanique Ind 2:383–394

    Article  Google Scholar 

  6. Kalateh F, Attarnejad R (2012) A new cavitation simulation method: dam-reservoir systems. Int J Comput Methods Eng Sci Mech 13:161–183. https://doi.org/10.1080/15502287.2012.660232

    Article  Google Scholar 

  7. Kalateh F, Koosheh A (2018) Finite element analysis of flexible structure and cavitating nonlinear acoustic fluid interaction under shock wave loading. Int J Nonlinear Sci Numer Simul 19:459–473

    Article  MathSciNet  Google Scholar 

  8. Zienkiewicz OC, Paul DK, Hinton E (1983) Cavitation in fluid-structure response (with particular reference to dams under earthquake loading). Earthq Eng Struct Dyn 11:463–481

    Article  Google Scholar 

  9. Hejranfar K, Ezzatneshan E, Fattah-Hesari K (2015) A comparative study of two cavitation modeling strategies for simulation of inviscid cavitating flows. Ocean Eng 108:257–275

    Article  Google Scholar 

  10. Deshpande M, Feng J, Merkle CL (1994) Cavity flow predictions based on the Euler equations. J Fluids Eng 116:36–44. https://doi.org/10.1115/1.2910238

    Article  Google Scholar 

  11. Venkateswaran S, Lindau JW, Kunz RF, Merkle CL (2002) Computation of multiphase mixture flows with compressibility effects. J Comput Phys 180:54–77

    Article  Google Scholar 

  12. Senocak I, Shyy W (2002) A pressure-based method for turbulent cavitating flow computations. J Comput Phys 176:363–383

    Article  Google Scholar 

  13. Goncalves E, Patella RF (2009) Numerical simulation of cavitating flows with homogeneous models. Comput Fluids 38:1682–1696

    Article  Google Scholar 

  14. Singhal AK, Athavale MM, Li H, Jiang Y (2002) Mathematical basis and validation of the full cavitation model. J Fluids Eng 124:617–624

    Article  Google Scholar 

  15. Ahuja V, Hosangadi A, Arunajatesan S (2001) Simulations of cavitating flows using hybrid unstructured meshes. J Fluids Eng 123:331–340

    Article  Google Scholar 

  16. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Article  Google Scholar 

  17. Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114:146–159

    Article  Google Scholar 

  18. Wang Z-B, Chen R, Wang H, Liao Q, Zhu X, Li S-Z (2016) An overview of smoothed particle hydrodynamics for simulating multiphase flow. Appl Math Model 40:9625–9655

    Article  MathSciNet  Google Scholar 

  19. Iben U, Ivanov NG, Isaenko II, Schmidt AA (2015) A Eulerian-Lagrangian description of cavitating flow. Tech Phys Lett 41(12):1159–1162. https://doi.org/10.1134/S1063785015120238

    Article  Google Scholar 

  20. Tseng CC, Liu PB (2016) Dynamic behaviors of the turbulent cavitating flows based on the Eulerian and Lagrangian viewpoints. Int J Heat Mass Transfer 102:479–500

    Article  Google Scholar 

  21. Cheng H, Long X,Ji B, Peng X, Farhat M (2021) A new Euler-Lagrangian cavitation model for tip-vortex cavitation with the effect of non-condensable gas. Int J Multiph Flow 134:103441.

  22. Long, Y, Long X, Ji B, Huang H (2019) Numerical simulations of cavitating turbulent flow around a marine propeller behind the hull with analyses of the vorticity distribution and particle tracks. Ocean Eng 189:106310.

  23. Freitas LG, Pereira L AA (2021) Comparison among drag coefficient models of single bubbles under high and low Morton number regimes. Chem Eng Sci 236: 116473.

  24. Yin T, Pavesi G, Pei J, Yuan S, Cavazzini, G, Ardizzon G (2021) Lagrangian analysis of unsteady partial cavitating flow around a three-dimensional hydrofoil. J Fluids Eng 143(4):041202.

  25. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  Google Scholar 

  26. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  27. Landrini M, Colagrossi A, Tulin MP (2002) A novel SPH formulation for 2-phase flows. In: Proceedings of 17th international workshop on water waves and floating bodies, Cambridge, UK.

  28. Monaghan JJ, Kocharyan A (1995) SPH simulation of multi-phase flow. Comput Phys Commun 87:225–235

    Article  Google Scholar 

  29. Adami S, Hu XY, Adams NA (2010) A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. J Comput Phys 229:5011–5021

    Article  Google Scholar 

  30. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406

    Article  Google Scholar 

  31. Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191:448–475

    Article  Google Scholar 

  32. Ritchie BW, Thomas PA (2001) Multiphase smoothed-particle hydrodynamics. Mon Not R Astron Soc 323:743–756

    Article  Google Scholar 

  33. Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B (2009) An Hamiltonian interface SPH formulation for multi-fluid and free surface flows. J Comput Phys 228:8380–8393

    Article  MathSciNet  Google Scholar 

  34. Chen Z, Zong Z, Liu MB, Zou L, Li HT, Shu C (2015) An SPH model for multiphase flows with complex interfaces and large density differences. J Comput Phys 283:169–188

    Article  MathSciNet  Google Scholar 

  35. Zhu GX, Zou L, Chen Z, Wang AM, Liu MB (2018) An improved SPH model for multiphase flows with large density ratios. Int J Numer Methods Fluids 86:167–184. https://doi.org/10.1002/fld.4412

    Article  MathSciNet  Google Scholar 

  36. Das AK, Das PK (2015) Modeling of liquid-vapor phase change using smoothed particle hydrodynamics. J Comput Phys 303:125–145

    Article  MathSciNet  Google Scholar 

  37. Nugent S, Posch HA (2000) Liquid drops and surface tension with smoothed particle applied mechanics. Phys Rev E 62:4968

    Article  Google Scholar 

  38. Sigalotti LDG, Troconis J, Sira E, Peña-Polo F, Klapp J (2015) Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity. Phys Rev E 92:13021

    Article  Google Scholar 

  39. Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer methods fluids 33:333–353

    Article  Google Scholar 

  40. Cummins SJ, Rudman M (1999) An SPH projection method. J Comput Phys 152:584–607

    Article  MathSciNet  Google Scholar 

  41. Szewc K, Pozorski J, Minier JP (2012) Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method. Int J Numer Methods Eng 92:343–369. https://doi.org/10.1002/nme.4339

    Article  MathSciNet  MATH  Google Scholar 

  42. Kalateh F, Koosheh A (2018) Application of SPH-FE method for fluid-structure interaction using immersed boundary method. Eng Comput 35:2802–2824. https://doi.org/10.1108/EC-01-2018-0041

    Article  MATH  Google Scholar 

  43. Khorasanizade S, Sousa JMM (2016) An innovative open boundary treatment for incompressible SPH. Int J Numer Methods Fluids 80:161–180

    Article  MathSciNet  Google Scholar 

  44. Monteleone A, Monteforte M, Napoli E (2017) Inflow/outflow pressure boundary conditions for smoothed particle hydrodynamics simulations of incompressible flows. Comput Fluids 159:9–22

    Article  MathSciNet  Google Scholar 

  45. Federico I, Marrone S, Colagrossi A, Aristodemo F, Antuono M (2012) Simulating 2D open-channel flows through an SPH model. Eur J Mech B/Fluids 34:35–46. https://doi.org/10.1016/j.euromechflu.2012.02.002

    Article  MathSciNet  MATH  Google Scholar 

  46. Fraga Filho CAD (2019) Smoothed particle hydrodynamics: fundamentals and basic applications in continuum mechanics. Springer, Cham.

  47. Batchelor CK, Batchelor GK (2000) An Introduction to Fluid Dynamics. Cambridge University Press

    Book  Google Scholar 

  48. Monaghan JJ (2005) Smoothed particle hydrodynamics. Reports Prog Phys 68:1703–1759. https://doi.org/10.1088/0034-4885/68/8/R01

    Article  MathSciNet  MATH  Google Scholar 

  49. Cleary PW, Monaghan JJ (1999) Conduction modelling using smoothed particle hydrodynamics. J Comput Phys 148:227–264

    Article  MathSciNet  Google Scholar 

  50. Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159:290–311

    Article  Google Scholar 

  51. Yang X-F, Liu M-B (2012) Improvement on stress instability in smoothed particle hydrodynamics. Acta Phys Sin 22.

  52. Fraga Filho CAD (2019) Smoothed Particle Hydrodynamics. https://doi.org/10.1007/978-3-030-00773-7

  53. Yang X, Kong SC (2017) A smoothed particle hydrodynamics method for evaporating multiphase flows. Phys Rev E 96:033309.

  54. Gröbelbauer HP, Fanneløp TK, Britter RE (1993) The propagation of intrusion fronts of high density ratios. J Fluid Mech 250:669–687. https://doi.org/10.1017/S0022112093001612

    Article  Google Scholar 

  55. Étienne J, Hopfinger EJ, Saramito P (2005) Numerical simulations of high density ratio lock-exchange flows. Phys Fluids 17:036601. https://doi.org/10.1063/1.1849800

    Article  MATH  Google Scholar 

  56. Ooi SK (2006) High resolution numerical simulations of lock-exchange gravity-driven flows. Dissertation, University of lowa

  57. Sato K, Shimojo S (2003) Detailed observations on a starting mechanism for shedding of cavitation cloud. In: Fifth international symposium on cavitation, Osaka, Japan, pp 1–4

  58. Srinivasan V, Salazar AJ, Saito K (2009) Numerical simulation of cavitation dynamics using a cavitation-induced-momentum-defect (CIMD) correction approach. Appl Math Model 33:1529–1559

    Article  Google Scholar 

  59. Lide DR (1995) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhoud Kalateh.

Additional information

Technical Editor: Erick Franklin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalateh, F., Hosseinzadeh, S. & Koosheh, A. Analysis and application of the modified smoothed particle hydrodynamics method to simulate cavitating flow. J Braz. Soc. Mech. Sci. Eng. 44, 119 (2022). https://doi.org/10.1007/s40430-021-03205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03205-z

Keywords

Navigation