Skip to main content
Log in

Analysis of vortex core generation in pipe flows under different Reynolds number conditions

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Pipe flow is a well-documented case widely studied in both theoretical and practical applications. The present work aims at studying the influence of the Reynolds number on turbulent vortex distribution using Large Eddy Simulations (LES). Features such as the mean velocity profiles and root mean squared velocity are first numerically investigated for different fluid properties involving Reynolds numbers ranging from 5,925 to 15,190 in order to verify the law-of-the-wall and turbulence statistics with experimental and DNS data. Once the simulations are validated, the vortex core generation within the flow is studied through a detection algorithm based on the \({\lambda }_{2}\) criterion with two different approaches, first using an absolute threshold value and then using a relative threshold value depending on the turbulent intensity. Results are compared in terms of number of structures and Probability Density Functions for both the size and the radial distributions. Finally, results are compared for one condition with the Q-criterion to assess the results obtained resulting in practically identical volume and radial distributions. These results are deemed to shed light on the vortex formation and location to generate proper inflow boundary conditions to highly resolved simulations in varied engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on request.

Code availability

The code used is OpenFOAM v3.0.0.

Abbreviations

DNS:

Direct Numerical Simulations

ECN:

Engine Combustion Network

SGS:

SubGrid Scale

WALE:

Wall Adapting Local Eddy-viscosity

LES:

Large Eddy Simulations

CFL:

Courant-Friedrich-Lewis

PDF:

Probability Density Function

\({u}_{\tau }\) :

Friction velocity

\(R\) :

Pipe radius

\(R{e}_{\tau }\) :

Kármán number

\(R{e}_{D}\) :

Reynolds number

\(L\) :

Pipe length

\(D\) :

Pipe diameter

\({\overline{u} }_{i}\) :

Resolved velocity vector

\(\overline{p }\) :

Modified kinetic pressure

\({C}_{w}\) :

WALE constant

\({\overline{S} }_{ij}\) :

Resolved strain rate tensor

\(S\) :

Symmetric strain rate tensor

\({U}_{b}\) :

Bulk velocity

\({y}^{+}\) :

Non-dimensional distance to the wall

\({r}_{wall}^{+}\) :

Cell size in radial direction on the wall in wall units

\({x}^{+}\) :

Cell size in axial direction in wall units

\(r\) :

Radial position

\({u}_{x}\) :

Axial velocity

\({u}_{x,cl}\) :

Axial velocity on the centerline

\({u}_{x}^{+}\) :

Axial velocity in wall units

\({u}_{x,rms}^{+}\) :

Axial root mean squared velocity in wall units

\(f\) :

Friction factor

\({N}_{s}\) :

Number of structures

\({\tau }_{w}\) :

Wall shear stress

\(\rho\) :

Density

\(\nu\) :

Kinematic viscosity

\({\nu }_{t}\) :

Turbulent viscosity

\(\Delta\) :

Width of the LES filter

\(\Omega\) :

Antisymmetric rate-of-rotation tensor

\(\mu\) :

Dynamic viscosity

\({\omega }_{wall}^{+}\) :

Cell size in azimuthal direction on the wall in wall units

\(\xi\) :

Non-dimensional radial position

\({\xi }^{+}\) :

Non-dimensional radial position in wall units

References

  1. Townsend AA (1980) The structure of turbulent shear flow, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  2. Marusic I, McKeon BJ, Monkewitz PA, Nagib HM, Smits AJ, Sreenivasan KR (2010) Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys Fluids 22:1–24. https://doi.org/10.1063/1.3453711

    Article  MATH  Google Scholar 

  3. Eggels JGM, Unger F, Weiss MH, Westerweel J, Adrian RJ, Friedrich R, Nieuwstadt FTM (2006) Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J Fluid Mech 268:175–210. https://doi.org/10.1017/S002211209400131X

    Article  Google Scholar 

  4. den Toonder JMJ, Nieuwstadt FTM (1997) Reynolds number effects in a turbulent pipe flow for low to moderate Re. Phys Fluids 9:3398–3409. https://doi.org/10.1063/1.869451

    Article  Google Scholar 

  5. Zagarola MV, Smits AJ (1997) Scaling of the mean velocity profile for turbulent pipe flow. Phys Rev Lett 78:239–242. https://doi.org/10.1103/PhysRevLett.78.239

    Article  Google Scholar 

  6. Hultmark M, Vallikivi M, Bailey SCC, Smits AJ (2012) Turbulent pipe flow at extreme reynolds numbers. Phys Rev Lett 108:1–5. https://doi.org/10.1103/PhysRevLett.108.094501

    Article  Google Scholar 

  7. Talamelli A, Persiani F, H M Fransson J, Alfredsson PH, V Johansson A, M Nagib H, Rüedi J-D, R Sreenivasan K, A Monkewitz P (2009) CICLoPE—a response to the need for high Reynolds number experiments. Fluid Dyn Res 41:021407. https://doi.org/10.1088/0169-5983/41/2/021407

  8. Örlü R, Fiorini T, Segalini A, Bellani G, Talamelli A, Alfredsson PH (2017) Reynolds stress scaling in pipe flow turbulence - first results from CICLoPE. Philos Trans R Soc A Math Phys Eng Sci. https://doi.org/10.1098/rsta.2016.0187

    Article  Google Scholar 

  9. Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166. https://doi.org/10.1017/S0022112087000892

    Article  MATH  Google Scholar 

  10. Kim KC, Adrian RJ (1999) Very large-scale motion in the outer layer. Phys Fluids 11:417–422. https://doi.org/10.1063/1.869889

    Article  MathSciNet  MATH  Google Scholar 

  11. Wu X, Moin P (2008) A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J Fluid Mech. https://doi.org/10.1017/S0022112008002085

    Article  MATH  Google Scholar 

  12. Wu X, Baltzer JR, Adrian RJ (2012) Direct numerical simulation of a 30R long turbulent pipe flow at R + = 685: Large-and very large-scale motions. J Fluid Mech 698:235–281. https://doi.org/10.1017/jfm.2012.81

    Article  MathSciNet  MATH  Google Scholar 

  13. El Khoury GK, Schlatter P, Noorani A, Fischer PF, Brethouwer G, Johansson AV (2013) Direct numerical simulation of turbulent pipe flow at moderately high reynolds numbers. Flow, Turbul Combust 91:475–495. https://doi.org/10.1007/s10494-013-9482-8

    Article  Google Scholar 

  14. Chin C, Ooi ASH, Marusic I, Blackburn HM (2010) The influence of pipe length on turbulence statistics computed from direct numerical simulation data. Phys Fluids. https://doi.org/10.1063/1.3489528

    Article  Google Scholar 

  15. Klewicki J, Chin C, Blackburn HM, Ooi A, Marusic I (2012) Emergence of the four layer dynamical regime in turbulent pipe flow. Phys Fluids. https://doi.org/10.1063/1.3702897

    Article  Google Scholar 

  16. Schlatter P, Örlü R (2012) Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J Fluid Mech 710:5–34. https://doi.org/10.1017/jfm.2012.324

    Article  MATH  Google Scholar 

  17. Jiménez J, Hoyas S (2008) Turbulent fluctuations above the buffer layer of wall-bounded flows. J Fluid Mech 611:215–236. https://doi.org/10.1017/S0022112008002747

    Article  MATH  Google Scholar 

  18. Kim J (2012) Progress in pipe and channel flow turbulence, 1961–2011. J Turbul 13:N45. https://doi.org/10.1080/14685248.2012.726358

    Article  MathSciNet  Google Scholar 

  19. Hellström LHO, Marusic I, Smits AJ (2016) Self-similarity of the large-scale motions in turbulent pipe flow. J Fluid Mech. https://doi.org/10.1017/jfm.2016.100

    Article  MathSciNet  MATH  Google Scholar 

  20. Abreu LI, Cavalieri AVG, Schlatter P, Vinuesa R, Henningson DS (2020) Spectral proper orthogonal decomposition and resolvent analysis of near-wall coherent structures in turbulent pipe flows. J Fluid Mech. https://doi.org/10.1017/jfm.2020.445

    Article  MathSciNet  MATH  Google Scholar 

  21. Hwang J, Sung HJ (2019) Wall-attached clusters for the logarithmic velocity law in turbulent pipe flow. Phys Fluids. https://doi.org/10.1063/1.5096433

    Article  Google Scholar 

  22. Dhamankar NS, Blaisdell GA, Lyrintzis AS (2018) Overview of turbulent inflow boundary conditions for large-eddy simulations. AIAA J 56:1317–1334. https://doi.org/10.2514/1.J055528

    Article  Google Scholar 

  23. Klein M, Sadiki A, Janicka J (2003) A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J Comput Phys 186:652–665. https://doi.org/10.1016/S0021-9991(03)00090-1

    Article  MATH  Google Scholar 

  24. Ménard T, Tanguy S, Berlemont A (2007) Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet. Int J Multiph Flow 33:510–524. https://doi.org/10.1016/j.ijmultiphaseflow.2006.11.001

    Article  Google Scholar 

  25. Bini M, Jones WP (2008) Large-eddy simulation of particle-laden turbulent flows. J Fluid Mech 614:207–252. https://doi.org/10.1017/S0022112008003443

    Article  MathSciNet  MATH  Google Scholar 

  26. Payri R, Salvador FJ, Gimeno J, Crialesi-Esposito M (2019) Comparison of mapped and synthetic inflow boundary conditions in Direct Numerical Simulation of sprays. In: ILASS - Europe 2019, 29th conference on liquid atomization and spray systems, 2–4 Sept 2019, Paris, France

  27. Warncke K, Gepperth S, Sauer B, Sadiki A, Janicka J, Koch R, Bauer HJ (2017) Experimental and numerical investigation of the primary breakup of an airblasted liquid sheet. Int J Multiph Flow 91:208–224. https://doi.org/10.1016/j.ijmultiphaseflow.2016.12.010

    Article  Google Scholar 

  28. Engine Combustion Network (ECN) (2010) Available at https://ecn.sandia.gov/. Accessed 12 May 2021

  29. Nicoud F, Ducros F (1999) Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbul Combust 62:183–200. https://doi.org/10.1023/A:1009995426001

    Article  MATH  Google Scholar 

  30. Issa RI (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys 62:40–65. https://doi.org/10.1016/0021-9991(86)90099-9

    Article  MathSciNet  MATH  Google Scholar 

  31. The OpenFOAM Foundation (2015) OpenFOAM v3.0.0 User Guide. Available at https://openfoam.org/version/3-0-0/https://openfoam.org/version/3-0-0/. Accessed 12 May 2021

  32. Jeong J, Hussain F, Jinhee J, Fazle H (1995) On the identification of a vortex. J Fluid Mech 285:69–94. https://doi.org/10.1017/S0022112095000462

    Article  MathSciNet  MATH  Google Scholar 

  33. Hunt JCR, Wray AA, Moin P (1988) Eddies, streams, and convergence zones in turbulent flows. In: Studying turbulence using numerical simulation databases, 2. Proceedings of the 1988 summer program, pp 193–208 (SEE N89-24538 18-34)

  34. Pope S (2009) Turbulent Flows, sixth. Cambridge University Press

    Google Scholar 

  35. Sagaut P (2006) Large Eddy simulation for incompressible flows: an introduction. Springer, Berlin, Heidelberg. ISBN 978-3-540-26403-3. https://doi.org/10.1007/b137536

    Book  MATH  Google Scholar 

  36. Celik I, Klein M, Janicka J (2009) Assessment measures for engineering LES applications. J Fluids Eng Trans ASME 131:0311021–03110210. https://doi.org/10.1115/1.3059703

    Article  Google Scholar 

  37. Wagner C, Hüttl T, Friedrich R (2001) Low-Reynolds-number effects derived from direct numerical simulations of turbulent pipe flow. Comput Fluids 30:581–590. https://doi.org/10.1016/S0045-7930(01)00007-X

    Article  MATH  Google Scholar 

  38. Nagib HM, Chauhan KA (2008) Variations of von Kármán coefficient in canonical flows. Phys Fluids. https://doi.org/10.1063/1.3006423

    Article  MATH  Google Scholar 

  39. Moody L, Princeton N (1944) Friction Factors for Pipe Flow. Trans ASME 66:671–684

    Google Scholar 

  40. Hasslberger J, Ketterl S, Klein M, Chakraborty N (2019) Flow topologies in primary atomization of liquid jets: A direct numerical simulation analysis. J Fluid Mech 859:819–838. https://doi.org/10.1017/jfm.2018.845

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research has been funded by the Spanish Ministerio de Economía y Competitividad through the project RTI2018-099706-B-100: “Estudio de la atomización primaria mediante simulaciones DNS y técnicas ópticas de muy alta resolución” and the Spanish Ministerio de Ciencia e innovación through the project EQC2018-004605-P: “Estudio del proceso de inyección en atmosferas presurizadas”. The authors thankfully acknowledge the computer resources from the Rigel cluster at UPV (Spain) and the Bebop cluster from the Laboratory Computing Resource Center at Argonne National Laboratory (USA). L.A. González-Montero is partially supported through the contract FPI - Subprograma 2 of the Universitat Politècnica de València.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. González-Montero.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Daniel Onofre de Almeida Cruz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvador, F.J., Carreres, M., Quintero, P. et al. Analysis of vortex core generation in pipe flows under different Reynolds number conditions. J Braz. Soc. Mech. Sci. Eng. 43, 297 (2021). https://doi.org/10.1007/s40430-021-03007-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03007-3

Keywords

Navigation