Skip to main content
Log in

An improved strength degradation model for fatigue life prediction considering material characteristics

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Experimental results show that when the loading sequence of fatigue loads changes, the fatigue cumulative damage prediction based on Miner's rule will have a large error, even as high as 252.83%. In an effort to improve the fatigue life predictions, based on the residual strength degradation rule, a power exponential fatigue equivalent damage model is presented in this paper, which contains two material parameters. Experimental data were cited to verify the residual strength model, and the statistical results showed that this model is capable of describing the residual strength degradation of materials. Furthermore, a fatigue cumulative damage model based on residual strength is established to predict the fatigue life. The Miner's rule and other models were compared to validate the model by referring to the test data of different materials under different loading stress levels. And the accuracy of the fatigue life predicted by this model is twice as good as that predicted by others models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figs. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A, B :

Dimensionless coefficient or strength degradation coefficient of material

d1, d2 :

Damage under various stresses

n, n1 :

The number of cycles applied load

N:

Fatigue life

R(n):

Residual strength of material

s:

Cyclic applied load

σa :

Maximum applied load

σa1 :

Cyclic load

σb :

Initial static strength

σR :

Residual strength

σR(n1):

Residual strength of material after \(n_{1}\) cycles under cyclic loading \(\sigma_{a1}\)

References

  1. Wu FQ, Yao WX (2010) A fatigue damage model of composite materials. Int J Fatigue 32:134–138. https://doi.org/10.1016/j.ijfatigue.2009.02.027

    Article  Google Scholar 

  2. Liu XT, Qi HZ, Wang XL, Wang YS, Li CC, Wang ML (2016) Reliability analysis and evaluation of differential system based on low load strengthening model. Qual Reliab Eng Int 32:647–662. https://doi.org/10.1002/qre.1779

    Article  Google Scholar 

  3. Liu XT, Zhang MH, Wang HJ, Luo J, Tong JC, Wang XL (2020) Fatigue life analysis of automotive key parts based on improved peak-over-threshold method. Fatigue Fract Eng Mater Struct 43:1824–1836. https://doi.org/10.1111/ffe.13235

    Article  Google Scholar 

  4. Miner MA (1945) Cumulative fatigue damage. J Appl Mech 67:A159–A164

    Article  Google Scholar 

  5. Palmgren AG (1924) Die Lebensdauer von Kugellagern (Life Length of Roller Bearings. In German). Z Ver Deutsch Ing 68:S339–S341

    Google Scholar 

  6. Djebli A, Aid A, Bendouba M, Amrouche A, Benguediab M, Benseddiq N (2013) A non-linear energy model of fatigue damage accumulation and its verification for Al-2024 aluminum alloy. Int J NonLin Mech 51:145–151. https://doi.org/10.1016/j.ijnonlinmec.2013.01.007

    Article  Google Scholar 

  7. Jiang CJ, Liu XT, Zhang MH, Wang X, Wang YS (2020) An improved nonlinear cumulative damage model for strength degradation considering loading sequence. Int J Damage Mech. https://doi.org/10.1177/1056789520964860

    Article  Google Scholar 

  8. Yu JW, Zheng SL, Pham H, Chen T (2018) Reliability modeling of multi-state degraded repairable systems and its applications to automotive systems. Qual Reliab Eng Int 34:459–474. https://doi.org/10.1002/qre.2265

    Article  Google Scholar 

  9. Hazrati A (2019) Multi-scale analysis of nonlinear fatigue damage behaviour of a quad-core sandwich panel with heterogeneous aluminium sheets. Theor Appl Fract Mech 99:79–94. https://doi.org/10.1016/j.tafmec.2018.11.003

    Article  Google Scholar 

  10. Gao P, Xie LY (2015) Dynamic reliability models of mechanical load-sharing parallel systems considering strength degradation of components. P I Mech Eng C- J Mec 229:2484–2495. https://doi.org/10.1177/0954406214560000

    Article  Google Scholar 

  11. Wu JN, Yan SZ, Li JL, Gu YX (2016) Mechanism reliability of bistable compliant mechanisms considering degradation and uncertainties: modeling and evaluation method. Appl Math Model 40:10377–10388. https://doi.org/10.1016/j.apm.2016.07.006

    Article  MATH  Google Scholar 

  12. Nakatanl M, Minoshima K (2011) Influence of activation energy and sensitivity to hydrogen embrittlement on fatigue strength degradation by irreversible hydrogen in high-strength steels. Fatigue Fract Eng Mater Struct 34:363–373. https://doi.org/10.1111/j.1460-2695.2010.01526.x

    Article  Google Scholar 

  13. Zhu SP, Huang HZ, Peng WW, Wang HK, Mahadevan S (2016) Probabilistic physics of failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty. Reliab Eng Syst Saf 146:1–12. https://doi.org/10.1016/j.ress.2015.10.002

    Article  Google Scholar 

  14. Wang HJ, Liu XT, Wang XL, Wang YS (2019) Numerical method for estimating fatigue crack initiation size using elastic–plastic fracture mechanics method. Appl Math Model 73:365–377. https://doi.org/10.1016/j.apm.2019.04.010

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang JN, Du SY (1983) An exploratory study into the fatigue of composites under spectrum loading. J Compos Mater 17:511–526. https://doi.org/10.1177/002199838301700604

    Article  Google Scholar 

  16. Franke L, Dierkes G (1999) A non-linear fatigue damage rule with an exponent based on a crack growth boundary condition. Int J Fatigue 21:761–767. https://doi.org/10.1016/S0142-1123(99)00045-6

    Article  Google Scholar 

  17. Revuelta D, Cuartero J, Miravete A, Clemente R (2000) A new approach to fatigue analysis in composites based on residual strength degradation. Compos Struct 48:183–186. https://doi.org/10.1016/S0263-8223(99)00093-8

    Article  Google Scholar 

  18. Zhang L, Ji W, Zhou W, Li WL, Ren CX (2015) Fatigue cumulative damage models based on strength degradation. Transac Chin Soc Agric Eng 31:47–52. https://doi.org/10.3969/j.issn.1002-6819.2015.z1.007(InChinese)

    Article  Google Scholar 

  19. Philippidis TP, Passipoularidis VA (2007) Residual strength after fatigue in composites: theory vs. experiment. Int J Fatigue 29:2104–2116. https://doi.org/10.1016/j.ijfatigue.2007.01.019

    Article  Google Scholar 

  20. Aid A, Amrouche A, Bouiadjra BB, Benguediab M, Mesmacque G (2011) Fatigue life prediction under variable loading based on a new damage model. Mater Design 32:183–191. https://doi.org/10.1016/j.matdes.2010.06.010

    Article  Google Scholar 

  21. Zhang MH, Liu XT, Wang YS, Wang XL (2018) Parameter distribution characteristics of material fatigue life using improved bootstrap method. Int J Damage Mech 28:772–793. https://doi.org/10.1177/1056789518792658

    Article  Google Scholar 

  22. Cheng HW, Tao JY, Chen X, Jiang Y (2014) A method for estimating rainflow fatigue damage of narrowband non-Gaussian random loadings. P I Mech Eng C- J Mec 228:2459–2468. https://doi.org/10.1177/0954406213519618

    Article  Google Scholar 

  23. Marcantonio V, Monarca D, Colantoni A, Cecchini M (2019) Ultrasonic waves for materials evaluation in fatigue, thermal and corrosion damage: a review. Mech Syst Signal Pr 120:32–42. https://doi.org/10.1016/j.ymssp.2018.10.012

    Article  Google Scholar 

  24. Hu YN, Wu SC, Chen L (2019) Review on failure behaviors of fusion welded high-strength Al alloys due to fine equiaxed zone. Eng Fract Mech 208:45–71. https://doi.org/10.1016/j.engfracmech.2019.01.013

    Article  Google Scholar 

  25. Geng SL, Liu XT, Yang XB, Meng ZY, Wang XL, Wang YS (2019) Load spectrum for automotive wheels hub based on mixed probability distribution model. Proc Inst Mech Eng Pt D: J Automobile Eng 233:3707–3720. https://doi.org/10.1177/0954407019832433

    Article  Google Scholar 

  26. Wang HJ, Liu XT, Zhang MH, Wang YS, Wang XL (2019) Prediction of material fatigue parameters for low alloy forged steels considering error circle. Int J Fatigue 121:135–145. https://doi.org/10.1016/j.ijfatigue.2018.12.002

    Article  Google Scholar 

  27. Kumar P, Das B, Singh A (2019) Effect of ratcheting fatigue damage on the evolution of tensile properties of Al–Mg alloy. P I Mech Eng C- J Mec 233:5033–5047. https://doi.org/10.1177/0954406219835237

    Article  Google Scholar 

  28. Gao JX, An ZW, Liu B (2017) A new method for obtaining P-S-N curves under the condition of small sample. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 231:130–137. https://doi.org/10.1177/1748006x16686896

    Article  Google Scholar 

  29. Şen I, Alderliesten RC, Benedictus R (2015) Lay-up optimisation of fibre metal laminates based on fatigue crack propagation and residual strength. Compos Struct 124:77–87. https://doi.org/10.1016/j.compstruct.2014.12.060

    Article  Google Scholar 

  30. D’Amore A, Giorgio M, Grassia L (2015) Modeling the residual strength of carbon fiber reinforced composites subjected to cyclic loading. Int J Fatigue 78:31–37. https://doi.org/10.1016/j.ijfatigue.2015.03.012

    Article  Google Scholar 

  31. Li B, Hoo Fatt SM (2016) Impact damage and residual strength predictions of 2D woven SiC/SiC composites. Finite Elem Anal Des 113:30–42. https://doi.org/10.1016/j.finel.2016.01.001

    Article  Google Scholar 

  32. Saggar M, Sallem H, Bouraoui C (2018) Fatigue life prediction under variable loading based on a new damage model devoted for defective material. Int J Adv Manuf Technol 95:431–443. https://doi.org/10.1007/s00170-017-1198-9

    Article  Google Scholar 

  33. Lu LK, Wang SN (2018) An analytical method to predict residual strength based on critical CTOA. Eng Fract Mech 200:31–41. https://doi.org/10.1016/j.engfracmech.2018.07.023

    Article  Google Scholar 

  34. Gao JX, An ZW (2019) A new probability model of residual strength of material based on interference theory. Int J Fatigue 118:202–208. https://doi.org/10.1016/j.ijfatigue.2018.09.015

    Article  Google Scholar 

  35. Shang DG, Yao WX (1999) A nonlinear damage cumulative model for uniaxial fatigue. Int J Fatigue 21:187–194. https://doi.org/10.1016/S0142-1123(98)00069-3

    Article  Google Scholar 

  36. Zhang JH (2014) Chaboche-Paris full-life prediction model considering multi-level loading and non-linear continuum damage. J Mech Eng 50:187–192. https://doi.org/10.3901/JME.2014.02.187(InChinese)

    Article  Google Scholar 

  37. Yuan R, Li HQ, Huang HZ, Zhu SP, Li YF (2013) A new non-linear continuum damage mechanics model for the fatigue life prediction under variable loading. Mechanics 19:506–511. https://doi.org/10.5755/j01.mech.19.5.5541

    Article  Google Scholar 

  38. Liu XT, Mao K, Wang XL, Wang X, Wang YS (2020) A modified quality loss model of service life prediction for products via wear regularity. Reliab Eng Syst Saf 204:107187. https://doi.org/10.1016/j.ress.2020.107187

    Article  Google Scholar 

  39. Huang HZ, Zhu SP, Wang ZL, Hou MJ, Fan ZQ, Zhou LW (2011) Nonlinear fatigue damage cumulative rule based on strength degradation and its application to fatigue life reliability analysis. Yingyong Jichu yu Gongcheng Kexue Xuebao/J Basic Sci Eng 19:323–334. https://doi.org/10.3969/j.issn.1005-0930.2011.02.017(InChinese)

    Article  Google Scholar 

  40. Yao WX (2003) Fatigue life prediction of structures. National Defense Industry Press, Beijing ((in Chinese))

    Google Scholar 

  41. Okayasu M, Go S (2015) Precise analysis of effects of aging on mechanical properties of cast ADC12 aluminum alloy. Mater Sci Eng, A 638:208–218. https://doi.org/10.1016/j.msea.2015.04.072

    Article  Google Scholar 

  42. Lv HB, Yao WX (2000) Residual strength model of elements’ fatigue reliablity evaluation. Chin J Aeronauti 21:75–78. https://doi.org/10.3321/j.issn:1000-6893.2000.01.017(InChinese)

    Article  Google Scholar 

  43. Lv WG, Xie LY, Xu H (1997) A nonlinear model of strength degradation. Chin J Mech Strength 19:55–62 ((in Chinese))

    Google Scholar 

  44. Li L, Xie L, He X, Hao G (2010) Strength degradation law of metallic material under fatigue loading. J Mech Strength 32:967–971

    Google Scholar 

  45. Sun JP, Tang ZP, Luo YP (2018) Time-dependent reliability analysis for structures under multi-level loads and cumulative damages. Ch Mech Eng 29:794–803. https://doi.org/10.3969/j.issn.1004-132X.2018.07.007(InChinese)

    Article  Google Scholar 

  46. Hu MM, Tang JJ, Wei P (2003) S-N curve movement-based life analytical model. J Hohai Univ (Natural Sci) 1:60–63. https://doi.org/10.3321/j.issn:1000-1980.2003.01.014(InChinese)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (51675324).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xintian Liu.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Hu, G., Liu, X. et al. An improved strength degradation model for fatigue life prediction considering material characteristics. J Braz. Soc. Mech. Sci. Eng. 43, 275 (2021). https://doi.org/10.1007/s40430-021-02997-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-02997-4

Keywords

Navigation