Skip to main content
Log in

Experimental and numerical studies on the influence of formability of AISI 316L tailor-welded blanks at different weld line orientations

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The manufacturing industries are keen on understanding the effect of weld line orientation on the formability characteristics of tailor-welded blanks (TWBs) with sheets for the design and manufacture of structures with lightweight. The AISI 316L sheets of 2 mm and 1.6 mm were welded together by cold metal transfer (CMT) process using a welding current of 95 Amperes and a welding speed of 350 mm/min to fabricate TWBs. Two different TWBs were made with the welding line parallel to the rolling direction RD (WL||RD) and the weld line perpendicular to the RD (WL⊥RD). The quality of the TWBs was evaluated by microstructural examination, mechanical integrity by tensile, hardness and Erichsen cupping test with laboratory-scale specimens. The engineering stress–strain plot and formability characteristics of the TWBs were considerably influenced by the weld line orientation with respect to the RD. It was noticed that the formability of TWBs decreased slightly compared to the base metal (BM) and fracture appeared in the thinner region (1.6 mm side), away from the weld line. Finite element (FE) prediction of Erichsen cup height was performed with ABAQUS software considering the weld metal properties. FE analysis using Johnson–Cook damage criterion predicted a cupping height that showed good coherence with experimental measurements for BM and TWBs with an error percentage less than 5. The stress distribution was non-uniform in the deformed TWBs with more stretching, and the magnitude of deformation was higher in the thinner region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Molak RM, Paradowski K, Brynk T, Ciupinski L, Pakiela Z, Kurzydlowski KJ (2009) Measurement of mechanical properties in a 316L stainless steel welded joint. Int J Press Vessels Pip 86(1):43–47

    Article  Google Scholar 

  2. Kianersi D, Mostafaei A, Amadeh AA (2014) Resistance spot welding joints of AISI 316L austenitic stainless steel sheets: phase transformations, mechanical properties and microstructure characterizations. Mater Des 61:251–263

    Article  Google Scholar 

  3. Kannan AR, Shanmugam NS, Sreedhar G (2020) Studies on corrosion behavior of AISI 316L cold metal transfer weldments in physiological solutions. Proc Inst Mech Eng Part E J Process Mech Eng 234(6):644–656

    Article  Google Scholar 

  4. Ozyurek D (2008) An effect of weld current and weld atmosphere on the resistance spot weld-ability of 304L austenitic stainless steel. Mater Des 29:597–603

    Article  Google Scholar 

  5. Trigwel S, Selvaduray G (2005) Effects of welding on the passive oxide film of electro polished 316L stainless steel. J Mater Process Technol 166:30–43

    Article  Google Scholar 

  6. Unnikrisnan R, Idury KSNS, Ismail TP, Bhadauria A, Shekhawat SK, Khatirkar RK, Sapate SG (2014) Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments. Mater Charact 93:10–23

    Article  Google Scholar 

  7. He X, Wang Y, Lu Y, Zeng K, Gu F, Ball A (2015) Self-piercing riveting of similar and dissimilar titanium sheet materials. Int J Adv Manuf Technol 80(9–12):2105–2115

    Article  Google Scholar 

  8. Kinsey B, Liu Z, Cao J (2000) Novel forming technology for tailor welded blanks. J Mater Process Technol 99(1):145–153

    Article  Google Scholar 

  9. Kahraman N (2007) The influence of welding parameters on the joint strength of resistance spot-welded titanium sheets. Mater Des 28(2):420–427

    Article  MathSciNet  Google Scholar 

  10. Zadpoor AA, Sinke J, Benedictus R (2007) Mechanics of tailor welded blanks: an overview. Key Eng Mater 344:373–382

    Article  Google Scholar 

  11. Sheng ZQ (2008) Formability of tailor-welded strips and progressive forming test. J Mater Process Technol 205(1–3):81–88

    Article  Google Scholar 

  12. Lathabai S, Jarvis BL, Barton KJ (2001) Comparison of keyhole and conventional gas tungsten arc welds in commercially pure titanium. Mater Sci Eng A 299(1–2):81–93

    Article  Google Scholar 

  13. Prakash PSL, Biswal SK, Roy GG, Jha MN, Mascarenhas M, Panda SK (2018) Effect of orientation of weld line on formability of electron beam-welded dissimilar thickness titanium sheets. J Mater Eng Perform 27(11):5913–5925

    Article  Google Scholar 

  14. Yigit F, Hashmi MSJ (2012) Effect of laser welding parameters on forming behavior of tailor welded blanks. Adv Mater Res 445:406–411

    Article  Google Scholar 

  15. Guruvu V, Kalimuthu R, Chinnaiyan SN, Marimuthu K (2018) Optimization of formability of tailor-welded blanks. Mater Technol 52(2):151–155

    Google Scholar 

  16. Lorenzin G, Rutili G (2009) The innovative use of low heat input in welding, experiences on ‘cladding’ and brazing using the CMT process. Weld Int 23(8):622–632

    Article  Google Scholar 

  17. Oh KS, Oh KH, Jang JH, Kim DJ, Han KS (2011) Design and analysis of new test method for evaluation of sheet metal formability. J Mater Process Technol 211(4):695–707

    Article  Google Scholar 

  18. Hecker SS (1974) A cup test for assessing stretchability. Metals Eng Quart 14(4):30–36

    Google Scholar 

  19. Narasimhan K, Miles MP, Wagoner RH (1995) A better sheet-formability test”. J Mater Process Technol 50(1–4):385–394

    Article  Google Scholar 

  20. Patel BC, Shah J, Shah H (2012) Review on formability of tailor welded blanks. Int J Theor Appl Res Mech Eng 1(1):89–94

    Google Scholar 

  21. Davies RW, Oliver HE, Smith MT, Grant GJ (1999) Characterizing Al tailor-welded blanks for automotive applications. J Miner Met Mater Soc 51(11):46–50

    Article  Google Scholar 

  22. Hamidinejad SM, Hasanniya MH, Salari N et al (2013) CO2 laser welding of interstitial free galvanized steel sheets used in tailor welded blanks. Int J Adv Manuf Technol 64:195–206

    Article  Google Scholar 

  23. Bandyopadhyay K, Panda SK, Saha P (2014) Prediction of formability of laser-welded dual-phase steel by finite element analysis. Proc Inst Mech Eng Part B J Eng Manuf 228(9):1048–1057

    Article  Google Scholar 

  24. Narooei K, Taheri AK (2009) A study on sheet formability by a stretch-forming process using assumed strain FEM”. J Eng Math 65(4):311–324

    Article  MATH  Google Scholar 

  25. Li W, Ma L, Peng P, Jia Q, Wan Z, Zhu Y, Guo W (2018) Microstructural evolution and deformation behavior of fiber laser welded QP980 steel joint. Mater Sci Eng A 717:124–133

    Article  Google Scholar 

  26. Song Y, Hua L (2012) Influence of inhomogeneous constitutive properties of weld materials on formability of tailor welded blanks. Mater Sci Eng A 552:222–229

    Article  Google Scholar 

  27. Habibi M, Hashemi R, Fallah Tafti M, Assempour A (2018) Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding. J Manuf Process 31:310–323

    Article  Google Scholar 

  28. Habibi M, Hashemi R, Ghazanfari A, Naghdabadi R, Assempour A (2016) Forming limit diagrams by including the MK model in finite element simulation considering the effect of bending. Proc Inst Mech Eng Part L J Mater Des Appl 232:625–636

    Google Scholar 

  29. Moayedi H, Darabi R, Ghabussi A, Habibi M, Foong LK (2020) Weld orientation effects on the formability of tailor welded thin steel sheets. Thin-Walled Struct 149:106669

    Article  Google Scholar 

  30. Placidi F, Fraschetti S. Potential application of stainless steel for vehicle crashworthiness structures. https://www.phase-trans.msm.cam.ac.uk/2005/LINK/142.pdf

  31. International Stainless Steel Forum. https://www.worldstainless.org/Files/issf/non-image-files/PDF/Automotiveapplications.pdf

  32. Ghosh N, Pal PK, Nandi G (2018) Investigation on dissimilar welding of AISI 409 ferritic stainless steel to AISI 316L austenitic stainless steel by using grey based Taguchi method. Adv Mater Process Technol 4(3):385–401

    Google Scholar 

  33. Ahmed E, Reisgen U, Schleser M, Mokrov O (2013) Biaxial behavior of laser welded DP/TRIP steel sheets. Int J Adv Manuf Technol 68(5):1075–1082

    Article  Google Scholar 

  34. Pramod R, Mohan S, Siva KN, Arungalai Vendan SS (2020) Formability studies on plasma arc welded duplex stainless steel 2205 sheet, Materialwiss. Werkstofftech 51(163):173

    Google Scholar 

  35. Habibi M, Hashemi R, Sadeghi E, Fazaeli A, Ghazanfari A, Lashini H (2016) Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures. J Mater Eng Perform 25:382–389

    Article  Google Scholar 

  36. Kumar SM, Shanmugam NS (2019) Finite element simulation for tensile and impact test of activated TIG welding of AISI 321 austenitic stainless steel. Proc Inst Mech Eng Part L J Mater Des Appl 233(11):2323–2334

    Google Scholar 

  37. Alipour M, Torabi MA, Sareban M, Lashini H, Sadeghi E, Fazaeli A, Habibi M, Hashemi R (2020) Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels. Mech Based Des Struct Mach 48:525–541

    Article  Google Scholar 

  38. Sorce FS, Ngo S, Lowe C, Taylor AC (2019) Quantification of coating surface strains in Erichsen cupping tests. J Mater Sci 54:7997–8009

    Article  Google Scholar 

  39. Martín Ó, De Tiedra P, García C, Martín F, López M (2012) Comparative study between large-scale and small-scale electrochemical potentiokinetic reactivation performed on AISI 316L austenitic stainless steel. Corros Sci 54:119–126

    Article  Google Scholar 

  40. Jang AY, Lee DJ, Lee SH, Shim JH, Kang SW, Lee HW (2011) Effect of Cr/Ni equivalent ratio on ductility-dip cracking in AISI 316L weld metals. Mater Des 32:371–376

    Article  Google Scholar 

  41. Chandrasekar G, Kailasanathan C, Verma DK, Nandagopal K (2017) Optimization of welding parameters, influence of activating flux and investigation on the mechanical and metallurgical properties of activated TIG weldments of AISI 316L stainless steel. Trans Indian Inst Met 70(3):671–684

    Article  Google Scholar 

  42. Elmer JW, Allen SM, Eagar TW (1989) Microstructural development during solidification of stainless steel alloys. Metall Trans 20(10):2117–2131

    Article  Google Scholar 

  43. Ekaputra IMW, Mungkasi S, Haryadi GD, Dewa RT, Kim SJ (2018) The influence of welding speed conditions of GMAW on mechanical properties of 316L austenitic stainless steel. MATEC Web Conf 159:02009

    Article  Google Scholar 

  44. Feng Y, Luo Z, Liu Z, Li Y, Luo Y, Huang Y (2015) Keyhole gas tungsten arc welding of AISI 316L stainless steel. Mater Des 85:24–31

    Article  Google Scholar 

  45. Rajesh Kannan A, Siva Shanmugam N, Arungalai Vendan S (2019) Effect of cold metal transfer process parameters on microstructural evolution and mechanical properties of AISI 316L tailor welded blanks. Int J Adv Manuf Technol 103(9):4265–4282

    Article  Google Scholar 

  46. Sriba A, Vogt J-B, Amara S-E (2018) Microstructure, micro-hardness and impact toughness of welded austenitic stainless steel 316L. Trans Indian Inst Met 71(9):2303–2314

    Article  Google Scholar 

  47. Saha S, Mukherjee M, Pal TK (2015) Microstructure, texture, and mechanical property analysis of gas metal arc welded AISI 304 austenitic stainless steel. J Mater Eng Perform 24(3):1125–1139

    Article  Google Scholar 

  48. Kell J, Tyrer JR, Higginson RL, Thomson RC (2005) Microstructural characterization of autogenous laser welds on 316L stainless steel using EBSD and EDS. J Microsc 217(2):167–173

    Article  MathSciNet  Google Scholar 

  49. Hamza S, Boumerzoug Z, Helbert AL, Bresset F, Baudin T (2019) Texture analysis of welded 304L pipeline steel. J Met Mater Miner 29(3):32–41

    Google Scholar 

  50. Kumar SM, Shanmugam NS (2018) Studies on the weldability, mechanical properties and microstructural characterization of activated flux TIG welding of AISI 321 austenitic stainless steel. Mater Res Express 5(10):106524

    Article  Google Scholar 

  51. Mohan Kumar S, Siva Shanmugam N (2020) Effect of heat input and weld chemistry on mechanical and microstructural aspects of double side welded austenitic stainless steel 321 grade using tungsten inert gas arc welding process, Materialwiss. Werkstofftech 51:349–367

    Article  Google Scholar 

  52. Kou S (2003) Welding metallurgy, 2nd edn. Wiley, Hoboken, pp 156–160

    Google Scholar 

  53. Campbell FC (2008) Elements of metallurgy and engineering alloys. ASM International, Materials Park

    Book  Google Scholar 

  54. Rajesh Kannan A, Siva Shanmugam N (2020) Some studies on mechanical properties of AISI 316L austenitic stainless steel weldments by cold metal transfer process. In: Shunmugam MS, Kanthababu M (eds) Advances in additive manufacturing and joining. Springer, Singapore, pp 359–371

    Google Scholar 

  55. Tȕmer M, Yılmaz R (2016) Characterization of microstructure, chemical composition, and toughness of a multipass welded joint of austenitic stainless steel AISI 316L. Int J Adv Manuf Technol 87(9):2567–2579

    Article  Google Scholar 

  56. Xia X, Jiefeng Wu, Liu Z, Haibiao Ji Xu, Shen JM, Zhuang P (2019) Correlation between microstructure evolution and mechanical properties of 50mm 316L electron beam welds. Fusion Eng Des 147:111245

    Article  Google Scholar 

  57. Kim PS, Choi SY, Kim YS, Kim JD (2015) A study on the weldability of INCOLOY 825 alloys and STS316L alloys. Adv Mater Res 1110:118–124

    Article  Google Scholar 

  58. Abbassi F, Belhadj T, Mistou S, Zghal A (2013) Parameter identification of a mechanical ductile damage using artificial neural networks in sheet metal forming. Mater Des 45:605–615

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the DST-FIST (SR/FST/ETI-421/2016) SEM–EDS facility at IIT Hyderabad, Telangana, used in this work.

Funding

This study was not financially supported by any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Siva Shanmugam.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Technical Editor: Izabel Fernanda Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, A.R., Sankarapandian, S., Pramod, R. et al. Experimental and numerical studies on the influence of formability of AISI 316L tailor-welded blanks at different weld line orientations. J Braz. Soc. Mech. Sci. Eng. 43, 171 (2021). https://doi.org/10.1007/s40430-021-02896-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-02896-8

Keywords

Navigation