Skip to main content
Log in

Nonlinear transient analysis of rigid rotor mounted on externally pressurized double-layered porous gas journal bearings accounting velocity slip

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The present work aims at estimating the journal center trajectories of a rigid rotor mounted on a hybrid, finite gas lubricated journal bearings with double-layered porous bushing using nonlinear transient analysis. To consider velocity slip in the film at the interface between film and porous region, Reynolds equation is modified using the Beavers–Joseph boundary condition. The governing equations of flow at clearance, porous regions are discretized using finite volume method. The variable values at cell-face centers are obtained using interpolation scheme of third order. Those discretized equations coupled with equations of rigid rotor motion are solved by third-order total variation diminishing Runge–Kutta scheme. Influence of velocity slip and design parameters on critical mass parameter values were explored. The observations are presented in the form of graphs that serves as a reference during the design of such bearings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Code availability

Custom code.

Abbreviations

C:

Radial clearance

D :

Diameter of the bearing

\(e\) :

Bearing eccentricity

\(\bar{F}_{\text{r}}\) :

Dimensionless film force along radial direction, \(F_{\text{r}} /LDp_{{\rm a}}\)

\(\bar{F}_{\Phi }\) :

Dimensionless film force along \(\Phi\) direction, \(F_{\Phi } /LDp_{{\rm a}}\)

\(h\) :

Local film thickness

\(\overline{h}\) :

Dimensionless film thickness (h/C)

\(H\) :

Thickness of the porous bushing

\(H_{1} ,H_{2}\) :

Thickness of the fine and coarse layers respectively

\(k_{x1} ,\,k_{y1} ,\,k_{z1}\) :

Fine layer permeability coefficients along x, y, z directions respectively

\(k_{x2} ,\,k_{y2} ,\,k_{z2}\) :

Coarse layer permeability coefficients along x, y, z directions respectively

\(\bar{K}_{x1} ,\bar{K}_{z1}\) :

Dimensionless permeability coefficients, \(k_{x1} /k_{y1} ,k_{z1} /k_{y1} \,\) respectively

\(\bar{K}_{x2} ,\bar{K}_{z2}\) :

Dimensionless permeability coefficients, \(k_{x2} /k_{y2} ,k_{z2} /k_{y2}\) respectively

\(\bar{K}_{y2}\) :

Dimensionless interlayer permeability coefficient, \(k_{y2} /k_{y1}\)

\(L\) :

Length of the bearing

\(\bar{M}\) :

Mass parameter, \(MC\omega^{2} /(LDp_{{\rm a}} )\)

\(\bar{M}_{{\rm c}}\) :

Critical mass parameter, \(M_{{\rm c}} C\omega^{2} /(LDp_{{\rm a}} )\)

\(O_{{\rm b}}\) :

Bearing center

\(O_{{\rm j}}\) :

Journal center

\(p\,\) :

Film pressure

\(\bar{p}\,\) :

Dimensionless film pressure, \(p/p_{{\rm a}}\)

\(p_{{\rm a}}\) :

Ambient pressure

\(p_{{\rm s}}\) :

Supply pressure

\(\bar{p}_{{\rm s}}\) :

Dimensionless supply pressure, \(p_{{\rm s}} /p_{{\rm a}}\)

\(p\,,p_{0}\) :

Film pressure and steady-state film pressure respectively

\(\bar{p}\,,\bar{p}_{0}\) :

Dimensionless film pressure, \(p/p_{{\rm a}} ,p_{0} /p_{{\rm a}}\)

\(p^{\prime}_{1}\) :

Pressure at fine layer

\(p^{\prime}_{2}\) :

Pressure at coarse layer

\(\bar{p}^{\prime}_{1}\) :

Dimensionless pressures at the fine layer, \(p'_{1} /p_{{\rm a}}\)

\(\bar{p}^{\prime}_{2}\) :

Dimensionless pressures at the coarse layer, \(p'_{2} /p_{{\rm a}}\)

\(R\) :

Journal radius

\(W_{0}\) :

Load capacity

\(\overline{{W_{0} }}\) :

Dimensionless load capacity

\(\overline{{W_{{\rm r}} }} ,\overline{{W_{t} }}\) :

Dimensionless components of load

x, y, z :

Cartesian coordinates

\(\theta ,\bar{y},\bar{z}\) :

Dimensionless coordinates, x/R, y/H, 2z/L

\(\theta^{ *}\) :

Coordinate in circumferential direction

\(\chi\) :

Ratio of thickness of coarse layer by fine layer, \(H_{2} /H_{1}\)

α :

Slip coefficient

σ x, y, z :

Dimensionless permeability factors in x, y and z direction, (C (Kx, y, z)−1/2)

\(\zeta_{x,z}\) :

Slip function in x and z direction defined by \(\frac{{3\left( {\overline{h} \sigma_{x,z} + 2\alpha } \right)}}{{\sigma_{x,z} \overline{h} \left( {1 + \alpha \overline{h} \sigma_{x,z} } \right)}}\)

\(\zeta_{ox}\) :

Slip function defined by \(\frac{1}{{\left( {1 + \alpha \overline{h} \sigma_{x} } \right)}}\)

\(\lambda\) :

Whirl ratio, \(\omega_{p} /\omega\)

\(\beta\) :

Bearing feeding parameter, \(12R^{2} k_{y1} /HC^{3}\)

\(\phi , \phi_{o}\) :

Attitude angle, steady-state attitude angle (in degrees)

\(\varepsilon , \varepsilon_{o}\) :

Eccentricity ratio \({e \mathord{\left/ {\vphantom {e C}} \right. \kern-0pt} C}\), steady-state eccentricity ratio

\(\eta\) :

Coefficient of absolute viscosity of fluid

\(\mu_{1} ,\mu_{2}\) :

Porosities of the fine and the coarse layer

\(\mu_{{\rm f}}\) :

Coefficient of friction

\(\gamma_{p1,2}\) :

Porosity parameters of the fine and the coarse layers, \(\gamma_{p1,2} = {{\mu_{1,2} C^{2} H^{2} } \mathord{\left/ {\vphantom {{\mu_{1,2} C^{2} H^{2} } {6R^{2} k_{y1,2} }}} \right. \kern-0pt} {6R^{2} k_{y1,2} }}\)

τ :

Non-dimensional time, \(\omega t\)

\(\omega\) :

Journal rotational speed

\(\omega_{p}\) :

Frequency of journal vibration

\(\Lambda\) :

Bearing number, \(6\eta \omega /p_{{\rm s}} \left( {{C \mathord{\left/ {\vphantom {C R}} \right. \kern-0pt} R}} \right)^{2}\)

\({\Re }\) :

Gas constant

TVD:

Total variation diminishing

References

  1. Saha N, Majumdar BC (2002) Study of externally-pressurized gas-lubricated two-layered porous journal bearings: a steady state analysis. Proc Inst Mech Eng Part J J Eng Tribol 216:151–158. https://doi.org/10.1243/1350650021543979

    Article  Google Scholar 

  2. Miyatake M, Yoshimoto S, Sato J (2006) Whirling instability of a rotor supported by aerostatic porous journal bearings with a surface-restricted layer. Proc Inst Mech Eng Part J J Eng Tribol 220:95–103. https://doi.org/10.1243/13506501JET89

    Article  Google Scholar 

  3. Verma PDS (1983) Double layer porous journal bearing analysis. Mech Mater 2(3):233–238

    MathSciNet  Google Scholar 

  4. Marshall BPR, Morgan VT (1965) Review of porous metal bearing develeopments. Proc Inst Mech Eng 180:154–159

    Google Scholar 

  5. Majumdar BC, Kumar A (2002) Analysis of two-layered gas-lubricated porous bearings. Int J Appl Mech Eng 7:653–664

    MATH  Google Scholar 

  6. Rao TVVLN, Rani AMA, Nagarajan T, Hashim FM (2013) Analysis of journal bearing with double-layer porous lubricant film: influence of surface porous layer configuration. Tribol Trans 56:841–847. https://doi.org/10.1080/10402004.2013.801100

    Article  Google Scholar 

  7. Otsu Y, Miyatake M, Yoshimoto S (2011) Dynamic characteristics of aerostatic porous journal bearings with a surface-restricted layer. J Tribol ASME 133:011701. https://doi.org/10.1115/1.4002730

    Article  Google Scholar 

  8. Majumdar BC (1989) Non-linear transient analysis for an externally pressurized porous gas journal bearing. Wear 132:139–150

    Google Scholar 

  9. Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30:197

    Google Scholar 

  10. Singh KC, Rao NS, Majumdar BC (1984) Hybrid porous gas journal bearings : steady state solution incorporating the effect of velocity slip. J Tribol 106:322–328

    Google Scholar 

  11. Chattopadhyay AK, Majumdar BC (1984) Dynamic characteristics of finite porous journal bearings considering velocity slip. J Tribol 106:534–536

    Google Scholar 

  12. Sakim A, Nabhani M, Khlifi MEL (2018) Non-Newtonian effects on porous elastic journal bearings. Tribol Int. https://doi.org/10.1016/j.triboint.2017.12.018

    Article  Google Scholar 

  13. Elsharkawy AA, Guedouar LH (2001) Direct and inverse solutions for elastohydrodynamic lubrication of finite porous journal bearings. J Tribol 123:276–282. https://doi.org/10.1115/1.1308025

    Article  Google Scholar 

  14. Liu J (2020) A dynamic modelling method of a rotor-roller bearing-housing system with a localized fault including the additional excitation zone. J Sound Vib 469:115144. https://doi.org/10.1016/j.jsv.2019.115144

    Article  Google Scholar 

  15. Lee Y-B, Kwak H-D, Kim C-H, Lee N-S (2005) Numerical prediction of slip flow effect on gas-lubricated journal bearings for MEMS/MST-based micro-rotating machinery. Tribol Int 38:89–96. https://doi.org/10.1016/j.triboint.2004.01.003

    Article  Google Scholar 

  16. Kumar MP, De S, Samanta P, Murmu NC (2018) A comprehensive numerical model for double-layered porous air journal bearing at higher bearing numbers. Proc Inst Mech Eng Part J J Eng Tribol 232:592–606. https://doi.org/10.1177/1350650117724054

    Article  Google Scholar 

  17. Arghir M, Le Lez S, Frene J (2006) Finite-volume solution of the compressible Reynolds equation: linear and non-linear analysis of gas bearings. Proc Inst Mech Eng Part J J Eng Tribol 220:617–627. https://doi.org/10.1243/13506501JET161

    Article  Google Scholar 

  18. Singh KC (1983) Theoretical investigation on the effect of velocity slip on steady state performance of externally pressurized porous gas bearings. PhD Thesis, Indian Institute of Technology, Kharagpur

  19. Phani Kumar M (2019) Investigation of externally pressurized multilayer porous journal bearings. PhD Thesis, Academy of Scientific and Innovative Research (AcSIR), New Delhi

  20. Pedlosky J (1992) Geophysical fluid dynamics, 2nd edn. Springer, New York

    MATH  Google Scholar 

  21. Kim KH, Kim C (2005) Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows. Part II: multi-dimensional limiting process. J Comput Phys 208:570–615. https://doi.org/10.1016/j.jcp.2005.02.022

    Article  MATH  Google Scholar 

  22. Gottlieb S, Shu C-W (1998) Total variation diminishing Runge–Kutta schemes. Math Comput Am Math Soc 67:73–85. https://doi.org/10.1090/S0025-5718-98-00913-2

    Article  MathSciNet  MATH  Google Scholar 

  23. Laha SK, Banjare H, Kakoty SK (2008) Stability analysis of a flexible rotor supported on finite hydrodynamic porous journal bearing using a non-linear transient method. Proc Inst Mech Eng Part J J Eng Tribol 222:963–973. https://doi.org/10.1243/13506501JET424

    Article  Google Scholar 

  24. Sun D-C (1974) Stability of gas-lubricated, externally pressurized porous journal bearings. J Lubr Technol Trans ASME 97(3):494–505

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Harish Hirani, Director, CSIR-CMERI for his encouragement and permission to publish the paper. The authors also would like to thank Dr. Sudipta De, CSIR-CMERI for his prolific discussions.

Funding

No financial support is received from any funding agency to carry this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Samanta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Daniel Onofre de Almeida Cruz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallisetty, P.K., Samanta, P. & Murmu, N.C. Nonlinear transient analysis of rigid rotor mounted on externally pressurized double-layered porous gas journal bearings accounting velocity slip. J Braz. Soc. Mech. Sci. Eng. 42, 530 (2020). https://doi.org/10.1007/s40430-020-02616-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02616-8

Keywords

Navigation