Skip to main content

Advertisement

Log in

Abstract

Pumped hydro storage plants (PHSP) are considered the most mature large-scale energy storage technology. Although Brazil stands out worldwide in terms of hydroelectric power generation, the use of PHSP in the country is practically nonexistent. Considering the advancement of variable renewable sources in the Brazilian electrical mix, and the need to provide flexibility to the national electrical system, several official documents cite PHSP as an important alternative for the expansion of the Brazilian electrical system. This article presents the state of the art of PHSP and its use, in order to create a theoretical basis for future research on the subject, also providing theoretical support for Brazilian energy planning. The review includes a global panorama on the use of PHSP in the world, the technical and projective foundations on this type of technology, its benefits, and disadvantages, in addition to the new configurations and possible layouts for the construction of pumped hydro storage plants. Finally, the challenges and trends for the dissemination of PHSP technology are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Source: Luo et al. [15]

Fig. 3

Source: [42]

Fig. 4

Source: [44]

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection : a review. Renew Sustain Energy Rev 15:1513–1524. https://doi.org/10.1016/j.rser.2010.11.037

    Article  Google Scholar 

  2. Ellabban O, Abu-rub H, Blaabjerg F (2014) Renewable energy resources : current status, future prospects and their enabling technology. Renew Sustain Energy Rev 39:748–764. https://doi.org/10.1016/j.rser.2014.07.113

    Article  Google Scholar 

  3. Sims REH (2004) Renewable energy: a response to climate change. Solar Energy 76:9–17

    Article  Google Scholar 

  4. Denholm P, Hand M (2011) Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy 39:1817–1830. https://doi.org/10.1016/j.enpol.2011.01.019

    Article  Google Scholar 

  5. Schaber K, Steinke F, Hamacher T (2012) Transmission grid extensions for the integration of variable renewable energies in Europe: Who benefits where ? Energy Policy 43:123–135. https://doi.org/10.1016/j.enpol.2011.12.040

    Article  Google Scholar 

  6. Olimstad G, Nielsen T, Børresen B (2012) Stability limits of reversible-pump turbines in turbine mode of operation and measurements of unstable characteristics. J Fluids Eng 134:1–8

    Google Scholar 

  7. Guezgouz M, Jurasz J, Bekkouche B (2019) Techno-economic and environmental analysis of a hybrid PV-WT-PSH/BB standalone system supplying various loads. Energies 12:514

    Article  Google Scholar 

  8. Canales FA, Beluco A, Mendes CAB (2015) A comparative study of a wind hydro hybrid system with water storage capacity: conventional reservoir or pumped storage plant? J Energy Storage 4:96–105

    Article  Google Scholar 

  9. Xu X, Hu W, Cao D, Huang Q, Chen C, Chen Z (2020) Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system. Renew Energy 147:1418–1431. https://doi.org/10.1016/j.renene.2019.09.099

    Article  Google Scholar 

  10. Makhdoomi S, Askarzadeh A (2020) Optimizing operation of a photovoltaic/diesel generator hybrid energy system with pumped hydro storage by a modified crow search algorithm. J Energy Storage 27:101040. https://doi.org/10.1016/j.est.2019.101040

    Article  Google Scholar 

  11. Wu Y, Zhang T, Xu C, Zhang B, Li L, Ke Y et al (2019) Optimal location selection for offshore wind-PV-seawater pumped storage power plant using a hybrid MCDM approach: a two-stage framework. Energy Convers Manag 199:112066. https://doi.org/10.1016/j.enconman.2019.112066

    Article  Google Scholar 

  12. Kusakana K (2018) Hybrid DG-PV with groundwater pumped hydro storage for sustainable energy supply in arid areas. J Energy Storage 18:84–89. https://doi.org/10.1016/j.est.2018.04.012

    Article  Google Scholar 

  13. Papaefthymiou SV, Papathanassiou SA (2014) Optimum sizing of wind-pumped-storage hybrid power stations inisland systems. Renew Energy. 64:187–196

    Article  Google Scholar 

  14. Palizban O, Kauhaniemi K (2016) Energy storage systems in modern grids—matrix of technologies and applications. J Energy Storage 6:248–259. https://doi.org/10.1016/j.est.2016.02.001

    Article  Google Scholar 

  15. Luo X, Wang J, Dooner M, Clarke J (2015) Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energy 137:511–536

    Article  Google Scholar 

  16. Yang C-J, Jackson RB (2011) Opportunities and barriers to pumped-hydro energy storage in the United States. Renew Sustain Energy Rev 15:839–844

    Article  Google Scholar 

  17. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  Google Scholar 

  18. Rehman S, Al-Hadhrami LM, Alam MM (2015) Pumped hydro energy storage system: a technological review. Renew Sustain Energy Rev 44:586–598

    Article  Google Scholar 

  19. Nag S, Lee KY, Suchitra D (2019) A comparison of the dynamic performance of conventional and ternary pumped storage hydro. Energies 12:3513

    Article  Google Scholar 

  20. Deane JP, Ó Gallachóir BP, McKeogh EJ (2010) Techno-economic review of existing and new pumped hydro energy storage plant. Renew Sustain Energy Rev 14:1293–1302

    Article  Google Scholar 

  21. Zakeri B, Syri S (2015) Electrical energy storage systems: a comparative life cycle cost analysis. Renew Sustain Energy Rev 42:569–596

    Article  Google Scholar 

  22. International Hydropower Association. The world´s water battery: pumped hydropower storage and clean energy transition’ [Internet]. IHA Work. Pap. London; 2018. https://www.hydropower.org/sites/default/files/publications-docs/the_worlds_water_battery_-_pumped_storage_and_the_clean_energy_transition_2.pdf

  23. Koritarov V, Guzowskui L, Feltes J, Kazachkov Y, Gong B, Trouille B et al (2013) Modeling ternary pumped storage units. Argonne

  24. Kapsali M, Anagnostopoulos JS, Kaldellis JK (2012) Wind powered pumped-hydro storage systems for remote islands: a complete sensitivity analysis based on economic perspectives. Appl Energy 99:430–444. https://doi.org/10.1016/j.apenergy.2012.05.054

    Article  Google Scholar 

  25. Foley AM, Leahy PG, Li K, McKeogh EJ, Morrison AP (2015) A long-term analysis of pumped hydro storage to firm wind power. Appl Energy 137:638–648

    Article  Google Scholar 

  26. Anagnostopoulos JS, Papantonis DE (2008) Simulation and size optimization of a pumped-storage power plant for the recovery of wind-farms rejected energy. Renew Energy 33:1685–1694

    Article  Google Scholar 

  27. Dursun B, Alboyaci B (2010) The contribution of wind-hydro pumped storage systems in meeting Turkey’s electric energy demand. Renew Sustain Energy Rev 14:1979–1988. https://doi.org/10.1016/j.rser.2010.03.030

    Article  Google Scholar 

  28. Kapsali M, Kaldellis JK (2010) Combining hydro and variable wind power generation by means of pumped-storage under economically viable terms. Appl Energy 87:3475–3485. https://doi.org/10.1016/j.apenergy.2010.05.026

    Article  Google Scholar 

  29. Bueno C, Carta JA (2006) Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands. Renew Sustain Energy Rev 10:312–340

    Article  Google Scholar 

  30. Portero U, Velázquez S, Carta JA (2015) Sizing of a wind-hydro system using a reversible hydraulic facility with seawater. A case study in the Canary Islands. Energy Convers Manag 106:1251–1263. https://doi.org/10.1016/j.enconman.2015.10.054

    Article  Google Scholar 

  31. Anagnostopoulos JS, Papantonis DE (2007) Pumping station design for a pumped-storage wind-hydro power plant. Energy Convers Manag 48:3009–3017

    Article  Google Scholar 

  32. Bhattacharjee S, Nayak PK (2019) PV-pumped energy storage option for convalescing performance of hydroelectric station under declining precipitation trend. Renew Energy 135:288–302. https://doi.org/10.1016/j.renene.2018.12.021

    Article  Google Scholar 

  33. Stoppato A, Cavazzini G, Ardizzon G, Rossetti A (2014) A PSO (particle swarm optimization)-based model for the optimal management of a small PV(Photovoltaic)-pump hydro energy storage in a rural dry area. Energy 76:168–174. https://doi.org/10.1016/j.energy.2014.06.004

    Article  Google Scholar 

  34. Liu J, Li J, Xiang Y, Hu S (2019) Optimal sizing of hydro-PV-pumped storage integrated generation system considering uncertainty of PV, load and price. Energies 12:3001

    Article  Google Scholar 

  35. Petrollese M, Seche P, Cocco D (2019) Analysis and optimization of solar-pumped hydro storage systems integrated in water supply networks. Energy 189:116176. https://doi.org/10.1016/j.energy.2019.116176

    Article  Google Scholar 

  36. Huang H, Zhou M, Zhang L, Li G, Sun Y (2019) Joint generation and reserve scheduling of wind-solar-pumped storage power systems under multiple uncertainties. Int Trans Electr Energy Syst 29:1–21. https://doi.org/10.1002/2050-7038.12003

    Article  Google Scholar 

  37. Xu B, Chen D, Venkateshkumar M, Xiao Y, Yue Y, Xing Y et al (2019) Modeling a pumped storage hydropower integrated to a hybrid power system with solar-wind power and its stability analysis. Appl Energy 248:446–462. https://doi.org/10.1016/j.apenergy.2019.04.125

    Article  Google Scholar 

  38. U.S. Department of Energy (2015) Pumped storage and potential hydropower from conduits. Rep. to Congr. Was. https://www.hydrogen.energy.gov/pdfs/hpep_report_2013.pdf

  39. Empresa Metropolitana de Águas e Energia (2019) EMAE: Elevatórias (Internet) (cited 11 Dec 2019). http://www.emae.com.br/conteudo.asp?id=Elevatórias

  40. Li Y, Cao H, Wang S, Jin Y, Li D, Wang X et al (2014) Load shifting of nuclear power plants using cryogenic energy storage technology. Appl Energy 113:1710–1716

    Article  Google Scholar 

  41. Agency IE (2016) World energy outlook 2016. Paris

  42. International Hydropower Association (2019) Hydropower status report: sector trends and insights. London. https://www.hydropower.org/sites/default/files/publications-docs/2019_hydropower_status_report_0.pdf

  43. Uria-Martinez R, Johnson M, O’Connor P, Samu NM, Witt AM, Battey H et al (2017) Hydropower Market Report [Internet]. 2018 Apr http://www.osti.gov/servlets/purl/1513459/

  44. Agência Nacional de Energia Elétrica (2020) Sistema de Informações de Geração da ANEEL (Internet) (cited 19 May 2020). https://www.aneel.gov.br/siga

  45. Empresa de Pesquisa Energética, Ministério de Minas e Energia (2019) Estudo de inventário de usinas hidrelétrica reversíveis (UHR): Metodologia e resultados preliminares para o Estado do Rio de Janeiro. Rio de Janeiro

  46. Ministério de Minas e Energia (2007) Plano nacional de energia 2030. Brasília

  47. Brasil, Ministério de Minas e Energia, Empresa de Pesquisa Energética. Plano decenal de expansão de energia 2029. Brasília

  48. Empresa de Pesquisa Energética, Ministério de Minas e Energia. Potencial dos recursos energéticos no horizonte 2050. Nota técnica PR 04/18 [Internet]. Rio de Janeiro; 2018. http://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-227/topico-416/NT04PR_RecursosEnergeticos2050.pdf

  49. Empresa de Pesquisa Energética (2018) Estudos de longo prazo: Considerações sobre a expansão hidrelétrica nos estudos de planejamento energético de longo prazo. Documento de apoio ao PNE 2050 [Internet]. Rio de Janeiro. http://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-227/topico-457/Considerações sobre a Expansão Hidrelétrica nos Estudos de Planejamento Energético de Longo Prazo.pdf. Acesso em: 06 out. 2019

  50. Gallo AB, Simões-Moreira JR, Costa HKM, Moutinho dos Santos MM, Santos E (2016) Energy storage in the energy transition context: a technology review. Renew Sustain Energy Rev 65:800–822. https://doi.org/10.1016/j.rser.2016.07.028

    Article  Google Scholar 

  51. Lund PD, Lindgren J, Mikkola J, Salpakari J (2015) Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew Sustain Energy Rev 45:785–807. https://doi.org/10.1016/j.rser.2015.01.057

    Article  Google Scholar 

  52. Wu Y, Zhang T, Xu C, Zhang X, Ke Y, Chu H et al (2019) Location selection of seawater pumped hydro storage station in China based on multi-attribute decision making. Renew Energy 139:410–425. https://doi.org/10.1016/j.renene.2019.02.091

    Article  Google Scholar 

  53. Botterud A, Levin T, Koritarov V (2014) Pumped storage hydropower: Benefits for grid reliability and integration of variable renewable energy. Argonne Natl Lab, Illinois

    Google Scholar 

  54. Witt A, Chalise DR, Hadjerioua B, Manwaring M, Bishop N (2016) Development and implications of a predictive cost methodology for modular pumped storage hydropower (m-PSH) projects in the United States. Oak Ridge

  55. Lu B, Stocks M, Blakers A (2018) Anderson K (2018) Geographic information system algorithms to locate prospective sites for pumped hydro energy storage. Appl Energy 222:300–312. https://doi.org/10.1016/j.apenergy.2018.03.177

    Article  Google Scholar 

  56. Fitzgerald N, Leahy P, Energy S, Arántegui RL, Fitzgerald N, Leahy P (2012) Pumped-hydro energy storage: potential for transformation from single dams (Internet). Petten. http://setis.ec.europa.eu/publications/jrc-setis-reports/pumped-hydro-energy-storage-potential-transformation-single-dams

  57. Kusakana K (2016) Optimal scheduling for distributed hybrid system with pumped hydro storage. Energy Convers Manag 111:253–260. https://doi.org/10.1016/j.enconman.2015.12.081

    Article  Google Scholar 

  58. Barbour E, Wilson IAG, Radcliffe J, Ding Y, Li Y (2016) A review of pumped hydro energy storage development in significant international electricity markets. Renew Sustain Energy Rev 61:421–432. https://doi.org/10.1016/j.rser.2016.04.019

    Article  Google Scholar 

  59. Menéndez J, Schmidt F, Konietzky H, Fernández-Oro JM, Galdo M, Loredo J et al (2019) Stability analysis of the underground infrastructure for pumped storage hydropower plants in closed coal mines. Tunn Undergr Space Technol 94:103117. https://doi.org/10.1016/j.tust.2019.103117

    Article  Google Scholar 

  60. Ela E, Kirby B, Botterud A, Milostan C, Krad I, Koritarov V (2013) The role of pumped storage hydro resources in electricity markets and system operation [Internet]. HydroVision Int. Denver, Color. July 23–26, 2013. https://mail.google.com/mail/u/0/?ui=2&shva=1#inbox/13efb76276e209ca%5Cnpapers2://publication/uuid/FD9ED768-0ABC-4386-943D-3088F538E614

  61. Yang W, Yang J (2019) Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment. Appl Energy 237:720–732. https://doi.org/10.1016/j.apenergy.2018.12.090

    Article  Google Scholar 

  62. Evans A, Strezov V, Evans TJ (2012) Assessment of utility energy storage options for increased renewable energy penetration. Renew Sustain Energy Rev 16:4141–4147. https://doi.org/10.1016/j.rser.2012.03.048

    Article  Google Scholar 

  63. Stenzel P, Linssen J (2016) Concept and potential of pumped hydro storage in federal waterways. Appl Energy 162:486–493. https://doi.org/10.1016/j.apenergy.2015.10.033

    Article  Google Scholar 

  64. Chen S, Chen B, Fath BD (2015) Assessing the cumulative environmental impact of hydropower construction on river systems based on energy network model. Renew Sustain Energy Rev 42:78–92. https://doi.org/10.1016/j.rser.2014.10.017

    Article  Google Scholar 

  65. McManamay RA, Parish ES, DeRolph CR, Witt AM, Graf WL, Burtner A (2020) Evidence-based indicator approach to guide preliminary environmental impact assessments of hydropower development. J Environ Manage 265:110489. https://doi.org/10.1016/j.jenvman.2020.110489

    Article  Google Scholar 

  66. RenÖFÄLt BM, Jansson R, Nilsson C (2010) Effects of hydropower generation and opportunities for environmental flow management in Swedish riverine ecosystems. Freshw Biol 55:49–67. https://doi.org/10.1111/j.1365-2427.2009.02241.x

    Article  Google Scholar 

  67. Botelho A, Ferreira P, Lima F, Pinto LMC, Sousa S (2017) Assessment of the environmental impacts associated with hydropower. Renew Sustain Energy Rev 70:896–904. https://doi.org/10.1016/j.rser.2016.11.271

    Article  Google Scholar 

  68. Sternberg R (2008) Hydropower: dimensions of social and environmental coexistence. Renew Sustain Energy Rev 12:1588–1621

    Article  Google Scholar 

  69. Abbasi T, Abbasi SA (2011) Small hydro and the environmental implications of its extensive utilization. Renew Sustain Energy Rev 15:2134–2143. https://doi.org/10.1016/j.rser.2010.11.050

    Article  Google Scholar 

  70. Erlewein A (2013) Disappearing rivers—the limits of environmental assessment for hydropower in India. Environ Impact Assess Rev 43:135–143. https://doi.org/10.1016/j.eiar.2013.07.002

    Article  Google Scholar 

  71. Bakken TH, Aase AG, Hagen D, Sundt H, Barton DN, Lujala P (2014) Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects. J Environ Manag 140:93–101. https://doi.org/10.1016/j.jenvman.2014.01.050

    Article  Google Scholar 

  72. Anderson EP, Freeman MC, Pringle CM (2006) Ecological consequences of hydropower development in Central America: impacts of small dams and water diversion on neotropical stream fish assemblages. River Res Appl 22:397–411. https://doi.org/10.1002/rra.899

    Article  Google Scholar 

  73. Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD et al (1997) The natural flow regime. Bioscience 47:769–784

    Article  Google Scholar 

  74. Young PS, Cech JJ, Thompson LC (2011) Hydropower-related pulsed-flow impacts on stream fishes: a brief review, conceptual model, knowledge gaps, and research needs. Rev Fish Biol Fish 21:713–731. https://doi.org/10.1007/s11160-011-9211-0

    Article  Google Scholar 

  75. Hayes DF, Labadie JW, Sanders TG, Brown JK (1998) Enhancing water quality in hydropower system operations. Water Resour Res 34:471–483. https://doi.org/10.1029/97WR03038

    Article  Google Scholar 

  76. Van Manh N, Dung NV, Hung NN, Kummu M, Merz B, Apel H (2015) Future sediment dynamics in the Mekong Delta floodplains: Impacts of hydropower development, climate change and sea level rise. Glob Planet Change 127:22–33. https://doi.org/10.1016/j.gloplacha.2015.01.001

    Article  Google Scholar 

  77. Zupanc V, Kammerer G, Grčman H, Šantavec I, Cvejić R, Pintar M (2016) Recultivation of agricultural land impaired by construction of a hydropower plant on the Sava River, Slovenia. Land Degrad Dev 27:406–415

    Article  Google Scholar 

  78. Li J, Dong S, Yang Z, Peng M, Liu S, Li X (2012) Effects of cascade hydropower dams on the structure and distribution of riparian and upland vegetation along the middle-lower Lancang-Mekong River. For Ecol Manag 284:251–259. https://doi.org/10.1016/j.foreco.2012.07.050

    Article  Google Scholar 

  79. Kadigi RMJ, Mdoe NSY, Ashimogo GC, Morardet S (2008) Water for irrigation or hydropower generation?-Complex questions regarding water allocation in Tanzania. Agric Water Manag 95:984–992

    Article  Google Scholar 

  80. Mekonnen MM, Hoekstra AY (2012) The blue water footprint of electricity from hydropower. Hydrol Earth Syst Sci 16:179–187

    Article  Google Scholar 

  81. Guo Z, Ge S, Yao X, Li H, Li X (2020) Life cycle sustainability assessment of pumped hydro energy storage. Int J Energy Res 44:192–204. https://doi.org/10.1002/er.4890

    Article  Google Scholar 

  82. Leung DYC, Yang Y (2012) Wind energy development and its environmental impact: a review. Renew Sustain Energy Rev 16:1031–1039. https://doi.org/10.1016/j.rser.2011.09.024

    Article  Google Scholar 

  83. Tsoutsos T, Frantzeskaki N, Gekas V (2005) Environmental impacts from the solar energy technologies. Energy Policy 33:289–296

    Article  Google Scholar 

  84. Cernea MM (1997) Hydropower dams and social impacts: a sociological perspective. Washington

  85. Kirchherr J, Charles KJ (2016) The social impacts of dams: a new framework for scholarly analysis. Environ Impact Assess Rev 60:99–114. https://doi.org/10.1016/j.eiar.2016.02.005

    Article  Google Scholar 

  86. Stigka EK, Paravantis JA, Mihalakakou GK (2014) Social acceptance of renewable energy sources: a review of contingent valuation applications. Renew Sustain Energy Rev 32:100–106. https://doi.org/10.1016/j.rser.2013.12.026

    Article  Google Scholar 

  87. Wüstenhagen R, Wolsink M, Bürer MJ (2007) Social acceptance of renewable energy innovation: an introduction to the concept. Energy Policy 35:2683–2691

    Article  Google Scholar 

  88. Batel S (2020) Research on the social acceptance of renewable energy technologies: past, present and future. Energy Res Soc Sci 68:101544. https://doi.org/10.1016/j.erss.2020.101544

    Article  Google Scholar 

  89. Klumpp F (2016) Comparison of pumped hydro, hydrogen storage and compressed air energy storage for integrating high shares of renewable energies—potential, cost-comparison and ranking. J Energy Storage 8:119–128. https://doi.org/10.1016/j.est.2016.09.012

    Article  Google Scholar 

  90. Connolly D, Lund H, Finn P, Mathiesen BV, Leahy M (2011) Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage. Energy Policy 39:4189–4196. https://doi.org/10.1016/j.enpol.2011.04.032

    Article  Google Scholar 

  91. Pinheiro V de CN (2016) Contribuição aos estudos regulatórios para inserção de sistemas de geração de energia elétrica compostos por fontes hidráulicas reversíveis, solares e eólicas no Brasil [Internet]. Universidade Estadual de Campinas. http://repositorio.unicamp.br/jspui/handle/REPOSIP/320711

  92. Menéndez J, Fernández-Oro JM, Galdo M, Loredo J (2019) Pumped-storage hydropower plants with underground reservoir: influence of air pressure on the efficiency of the Francis turbine and energy production. Renew Energy 143:1427–1438. https://doi.org/10.1016/j.apenergy.2016.12.093

    Article  Google Scholar 

  93. Fan J, Xie H, Chen J, Jiang D, Li C, Ngaha Tiedeu W et al (2020) Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs. Appl Energy 258:114007

    Article  Google Scholar 

  94. Katsaprakakis DA, Dakanali I, Condaxakis C, Christakis DG (2019) Comparing electricity storage technologies for small insular grids. Appl Energy 251:113332. https://doi.org/10.1016/j.apenergy.2019.113332

    Article  Google Scholar 

  95. Hiratsuka A, Arai T, Yoshimura T (1993) Seawater pumped-storage power plant in Okinawa island, Japan. Eng Geol 35:237–246

    Article  Google Scholar 

  96. Vilanova MRN, Balestieri JAP (2014) Hydropower recovery in water supply systems: models and case study. Energy Convers Manag 84:414–426. https://doi.org/10.1016/j.enconman.2014.04.057

    Article  Google Scholar 

  97. Cazzaniga R, Rosa-Clot M, Rosa-Clot P, Tina GM (2019) Integration of PV floating with hydroelectric power plants. Heliyon 5:e01918. https://doi.org/10.1016/j.heliyon.2019.e01918

    Article  Google Scholar 

  98. Maués JA (2019) Floating solar PV—hydroelectric power plants in Brazil: Energy storage solution with great application potential. Int J Energy Prod Manag 4:40–52

    Google Scholar 

  99. Perez M, Perez R, Ferguson CR, Schlemmer J (2018) Deploying effectively dispatchable PV on reservoirs: comparing floating PV to other renewable technologies. Sol Energy 174:837–847. https://doi.org/10.1016/j.solener.2018.08.088

    Article  Google Scholar 

  100. Afsharian S, Taylor PA, Momayez L (2020) Investigating the potential impact of wind farms on Lake Erie. J Wind Eng Ind Aerodyn 198:104049. https://doi.org/10.1016/j.jweia.2019.104049

    Article  Google Scholar 

  101. McCombs MP, Mulligan RP, Boegman L (2014) Offshore wind farm impacts on surface waves and circulation in Eastern Lake Ontario. Coast Eng 93:32–39. https://doi.org/10.1016/j.coastaleng.2014.08.001

    Article  Google Scholar 

  102. Brasil. Lei n ° 12.651, de maio de 2012. Dispõe sobre a proteção da vegetação nativa; altera as Leis nos 6.938, de 31 de agosto de 1981, 9.393, de 19 de dezembro de 1996, e 11.428, de 22 de dezembro de 2006; revoga as Leis nos 4.771, de 15 de setembro de 1965, e [Internet]. Brasília: Presidência da República. pp 1–29. http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm

  103. Steffen B (2012) Prospects for pumped-hydro storage in Germany. Energy Policy 45:420–429. https://doi.org/10.1016/j.enpol.2012.02.052

    Article  Google Scholar 

  104. Ma T, Yang H, Lu L, Peng J (2015) Pumped storage-based standalone photovoltaic power generation system: modeling and techno-economic optimization. Appl Energy 137:649–659. https://doi.org/10.1016/j.apenergy.2014.06.005

    Article  Google Scholar 

  105. Segurado R, Madeira JFA, Costa M, Duić N, Carvalho MG (2016) Optimization of a wind powered desalination and pumped hydro storage system. Appl Energy 177:487–499

    Article  Google Scholar 

  106. Brown PD, Peas Lopes JA, Matos MA (2008) Optimization of pumped storage capacity in an isolated power system with large renewable penetration. IEEE Trans Power Syst 23:523–531

    Article  Google Scholar 

  107. Libanori GHD (2017) Modelagem numérica de otimização aplicada a sistemas combinados de geração de energia elétrica por fontes intermitentes e usinas hidrelétricas reversíveis. Universidade Estadual de Campinas

  108. de Lucena AFP, Szklo AS, Schaeffer R, de Souza RR, Borba BSMC, da Costa IVL et al (2009) The vulnerability of renewable energy to climate change in Brazil. Energy Policy 37:879–889

    Article  Google Scholar 

  109. Pereira de Lucena AF, Szklo AS, Schaeffer R, Dutra RM (2010) The vulnerability of wind power to climate change in Brazil. Renew Energy 35:904–912. https://doi.org/10.1016/j.renene.2009.10.022

    Article  Google Scholar 

  110. Hamududu B (2012) Killingtveit A (2012) Assessing climate change impacts on global hydropower. Energies 5:305–322

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateus Ricardo Nogueira Vilanova.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Daniel Onofre de Almeida Cruz, D.Sc.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilanova, M.R.N., Flores, A.T. & Balestieri, J.A.P. Pumped hydro storage plants: a review. J Braz. Soc. Mech. Sci. Eng. 42, 415 (2020). https://doi.org/10.1007/s40430-020-02505-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02505-0

Keywords

Navigation