Skip to main content
Log in

Combination resonances of spinning composite shafts considering geometric nonlinearity

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the combination resonance of a spinning composite shaft with geometric nonlinearity is studied by the method of harmonic balance. The full equations of motion containing the flexural–flexural–extensional–torsional coupling are employed for the analysis. The equations were discretized by both one and two modes, so two different forms of combination resonances can be analyzed. The shear deformation is neglected due to the shaft slenderness, whereas the rotary inertia and the gyroscopic effects are considered. The effects of different parameters such as external damping and the eccentricity on the response bifurcation of the shaft are investigated. The effect of the fiber orientation angle was also investigated. The results obtained for the composite shaft are compared to those of its metallic counterpart. It is shown that two geometrically identical shafts, one metallic and one composite, have different behaviors under the condition of combination resonance. It is observed that the vibration of the composite shaft occurs with smaller amplitude. This confirms the superiority of the composite shafts over metallic ones. Finally, the results were validated by the numerical simulations and there was a good agreement between the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Nayfeh AH (1983) Combination resonances in the non-linear response of bowed structures to a harmonic excitation. J Sound Vib 90(4):457–470

    Article  Google Scholar 

  2. Zaretzky CL, Crespo da Silva MRM (1994) Nonlinear flexural–flexural–torsional interactions in beams including the effect of torsional dynamics. II: combination resonance. Nonlinear Dyn 5(2):161–180

    Google Scholar 

  3. Foryś A (1995) Periodic combination resonance in a non-linear system of non-prismatic rods. J Sound Vib 181(2):355–368

    Article  Google Scholar 

  4. Plaut RH, Wauer J (1995) Parametric, external and combination resonances in coupled flexural and torsional oscillations of an unbalanced rotating shaft. J Sound Vib 183(5):889–897

    Article  Google Scholar 

  5. Al-Bedoor BO (2001) Modeling the coupled torsional and lateral vibrations of unbalanced rotors. Comput Methods Appl Mech Eng 190(45):5999–6008

    Article  Google Scholar 

  6. Avramov KV (2002) non-linear beam oscillations excited by lateral force at combination resonance. J Sound Vib 257(2):337–359

    Article  MathSciNet  Google Scholar 

  7. Avramov KV (2003) Bifurcations at combination resonance and quasiperiodic vibrations of flexible beams. Int Appl Mech 39(8):976–982

    Article  Google Scholar 

  8. Yuan Z, Chu F, Lin Y (2007) External and internal coupling effects of rotor’s bending and torsional vibrations under unbalances. J Sound Vib 299(1):339–347

    Article  Google Scholar 

  9. Udar RS, Datta PK (2007) Parametric combination resonance instability characteristics of laminated composite curved panels with circular cutout subjected to non-uniform loading with damping. Int J Mech Sci 49(3):317–334

    Article  Google Scholar 

  10. Bang D-J, Jeong T-G (2008) Perturbation analysis of the combination resonances of a thin cantilever beam under vertical excitations. Springer, Berlin

    Book  Google Scholar 

  11. Hosseini SAA, Khadem SE (2009) Combination resonances in a rotating shaft. Mech Mach Theory 44(8):1535–1547

    Article  Google Scholar 

  12. Kochurov RE, Avramov KV (2011) Parametric vibration of cylindrical shells in the region of combination resonances under geometrically nonlinear deformation. J Math Sci 174(3):283–294

    Article  Google Scholar 

  13. Khadem SE, Shahgholi M, Hosseini SAA (2011) Two-mode combination resonances of an in-extensional rotating shaft with large amplitude. Nonlinear Dyn 65(3):217–233

    Article  MathSciNet  Google Scholar 

  14. Dimentberg M, Bucher C (2012) Combinational parametric resonance under imperfectly periodic excitation. J Sound Vib 331(19):4373–4378

    Article  Google Scholar 

  15. Hu Y, Zhang Z (2012) The bifurcation analysis on the circular functionally graded plate with combination resonances. Nonlinear Dyn 67(3):1779–1790

    Article  MathSciNet  Google Scholar 

  16. Machado SP, Martı́n Saravia C (2013) Shear-deformable thin-walled composite beams in internal and external resonance. Compos Struct 97:30–39

    Article  Google Scholar 

  17. Bekhoucha F et al (2013) Nonlinear forced vibrations of rotating composite beams with internal combination resonance. Springer, Berlin

    Book  Google Scholar 

  18. Boyaci A (2016) Numerical continuation applied to nonlinear rotor dynamics. Procedia IUTAM 19:255–265

    Article  Google Scholar 

  19. Navazi HM, Hojjati M (2017) Nonlinear vibrations and stability analysis of a rotor on high-static-low-dynamic-stiffness supports using method of multiple scales. Aerosp Sci Technol 63:259–265

    Article  Google Scholar 

  20. Shaban Ali Nezhad H, Hosseini SAA, Zamanian M (2017) Flexural–flexural–extensional–torsional vibration analysis of composite spinning shafts with geometrical nonlinearity. Nonlinear Dyn 89(1):651–690

    Article  Google Scholar 

  21. Qaderi MS, Hosseini SAA, Zamanian M (2018) Combination parametric resonance of nonlinear unbalanced rotating shafts. J Comput Nonlinear Dyn 13(11):111002-8

    Google Scholar 

  22. Shahgholi M, Payganeh G (2018) Forced vibrations of nonlinear symmetrical and asymmetrical rotating shafts mounted on a moving base. Z Angew Math Mech 99:e201700097

    Article  MathSciNet  Google Scholar 

  23. Jones RM (1975) Mechanics of composite materials. Scripta Book Company, Washington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. A. Hosseini.

Additional information

Technical Editor: Pedro Manuel Calas Lopes Pacheco, D.Sc.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

  1. 1.

    Stress–strain relationship for a composite shaft in the Cartesian and cylindrical coordinate system is [20]

    $$ \left\{ \begin{aligned} \sigma_{11} \hfill \\ \sigma_{22} \hfill \\ \sigma_{33} \hfill \\ \tau_{23} \hfill \\ \tau_{31} \hfill \\ \tau_{12} \hfill \\ \end{aligned} \right\} = \left[ {\begin{array}{*{20}c} {Q_{11} } & {Q_{12} } & {Q_{13} } & 0 & 0 & 0 \\ {Q_{12} } & {Q_{22} } & {Q_{23} } & 0 & 0 & 0 \\ {Q_{13} } & {Q_{23} } & {Q_{33} } & 0 & 0 & 0 \\ 0 & 0 & 0 & {Q_{44} } & 0 & 0 \\ 0 & 0 & 0 & 0 & {Q_{55} } & 0 \\ 0 & 0 & 0 & 0 & 0 & {Q_{66} } \\ \end{array} } \right]\left\{ \begin{aligned} \varepsilon_{11} \hfill \\ \varepsilon_{22} \hfill \\ \varepsilon_{33} \hfill \\ \gamma_{23} \hfill \\ \gamma_{31} \hfill \\ \gamma_{12} \hfill \\ \end{aligned} \right\} $$
    $$ \left\{ \begin{aligned} \sigma_{xx} \hfill \\ \sigma_{\theta \theta } \hfill \\ \sigma_{rr} \hfill \\ \tau_{r\theta } \hfill \\ \tau_{xr} \hfill \\ \tau_{x\theta } \hfill \\ \end{aligned} \right\} = \left[ {\begin{array}{*{20}c} {\overline{Q}_{11} } & {\overline{Q}_{12} } & {\overline{Q}_{13} } & 0 & 0 & {\overline{Q}_{16} } \\ {\overline{Q}_{12} } & {\overline{Q}_{22} } & {\overline{Q}_{23} } & 0 & 0 & {\overline{Q}_{26} } \\ {\overline{Q}_{13} } & {\overline{Q}_{23} } & {\overline{Q}_{33} } & 0 & 0 & {\overline{Q}_{36} } \\ 0 & 0 & 0 & {\overline{Q}_{44} } & {\overline{Q}_{45} } & 0 \\ 0 & 0 & 0 & {\overline{Q}_{45} } & {\overline{Q}_{55} } & 0 \\ {\overline{Q}_{16} } & {\overline{Q}_{26} } & {\overline{Q}_{36} } & 0 & 0 & {\overline{Q}_{66} } \\ \end{array} } \right]\left\{ \begin{aligned} \varepsilon_{xx} \hfill \\ \varepsilon_{\theta \theta } \hfill \\ \varepsilon_{rr} \hfill \\ \gamma_{r\theta } \hfill \\ \gamma_{xr} \hfill \\ \gamma_{x\theta } \hfill \\ \end{aligned} \right\} $$

    where σ and τ are normal and shear stresses, respectively. The subscript defines the coordinate system in which they are presented, and ε and γ are also normal and shear strains. They are related by

    $$ \left[ {\bar{Q}} \right] = \left[ T \right]^{ - 1} \left[ Q \right]\left[ T \right]^{ - T} $$

    In the above equations

    $$ \begin{aligned} & \left[ T \right] = \left[ {\begin{array}{*{20}c} {m^{2} } & {n^{2} } & 0 & 0 & 0 & {2mn} \\ {n^{2} } & {m^{2} } & 0 & 0 & 0 & { - 2mn} \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & m & { - n} & 0 \\ 0 & 0 & 0 & n & m & 0 \\ { - mn} & {mn} & 0 & 0 & 0 & {m^{2} - n^{2} } \\ \end{array} } \right] \\ & m = \cos \eta ,\quad n = \sin \eta \\ \end{aligned} $$

    and η is the fiber orientation angle in each composite layer. In addition,

    $$ \begin{aligned} & Q_{11} = \frac{{E_{11} }}{{1 - \frac{{\nu_{12}^{2} E_{22} }}{{E_{11} }}}},\quad Q_{12} = \frac{{E_{22} \nu_{12} }}{{1 - \frac{{\nu_{12}^{2} E_{22} }}{{E_{11} }}}},\quad Q_{22} = \frac{{E_{22} }}{{1 - \frac{{\nu_{12}^{2} E_{22} }}{{E_{11} }}}},\quad\\& Q_{44} = G_{23} ,\quad Q_{55} = G_{13} ,\quad Q_{66} = G_{12} , \\ & Q_{13} = Q_{23} = Q_{33} = 0 \\ \end{aligned}$$
  2. 2.

    Natural frequencies of the composite shaft for one-mode discretization are [20]

    $$ \begin{aligned} & \omega_{\text{f}} = - \frac{1}{2}I\sqrt { - 2{\mkern 1mu} \pi^{4} \sqrt {I_{p}^{2}\Omega ^{2} \left( {I_{\text{p}}^{2}\Omega ^{2} + 4{\mkern 1mu} D_{11} } \right)} + \left( { - 2{\mkern 1mu} I_{\text{p}}^{2}\Omega ^{2} - 4{\mkern 1mu} D_{11} } \right)\pi^{4} } \\ & \omega_{\text{b}} = - \frac{1}{2}I\sqrt {2{\mkern 1mu} \pi^{4} \sqrt {I_{\text{p}}^{2}\Omega ^{2} \left( {I_{\text{p}}^{2}\Omega ^{2} + 4{\mkern 1mu} D_{11} } \right)} + \left( { - 2{\mkern 1mu} I_{\text{p}}^{2}\Omega ^{2} - 4{\mkern 1mu} D_{11} } \right)\pi^{4} } \\ & \omega_{u} = \pi \sqrt {A_{11} } \\ & \omega_{\varphi } = \pi \sqrt {D_{66} } \\ \end{aligned} $$
  3. 3.

    Equations of motion obtained for two-mode discretization are [20]

    $$ \begin{aligned} & \pi^{4} A_{11} [ - 8{\mkern 1mu} V_{1} \left( t \right)V_{2} \left( t \right)U_{2} \left( t \right) - 8{\mkern 1mu} W_{1} \left( t \right)W_{2} \left( t \right)U_{2} \left( t \right) - \frac{3}{2}{\mkern 1mu} \left( {V_{1} \left( t \right)} \right)^{2} U_{1} \left( t \right) \\ & \quad - 4{\mkern 1mu} \left( {V_{2} \left( t \right)} \right)^{2} U_{1} \left( t \right) - \frac{3}{2}{\mkern 1mu} \left( {W_{1} \left( t \right)} \right)^{2} U_{1} \left( t \right) - 4{\mkern 1mu} \left( {W_{2} \left( t \right)} \right)^{2} U_{1} \left( t \right)]\varepsilon^{3} \\ & \quad +\, \sqrt 2 \pi^{3} A_{11} \left( {V_{1} \left( t \right)V_{2} \left( t \right) + W_{1} \left( t \right)W_{2} \left( t \right)} \right)\varepsilon^{2} - \left[ {\frac{{32{\mkern 1mu} }}{3}\pi B_{16} \varphi_{2} \left( t \right) + \pi^{2} A_{11} U_{1} \left( t \right) + \frac{{{\text{d}}^{2} }}{{{\text{d}}t^{2} }}U_{1} \left( t \right)} \right]\varepsilon = 0 \\ & \pi^{4} {\kern 1pt} A_{11} [ - 8V_{1} \left( t \right)V_{2} \left( t \right)U_{1} \left( t \right) - 8{\kern 1pt} W_{1} \left( t \right)W_{2} \left( t \right)U_{1} \left( t \right) - 4{\kern 1pt} \left( {V_{1} \left( t \right)} \right)^{2} U_{2} \left( t \right) \\ & \quad - 24{\kern 1pt} \left( {V_{2} \left( t \right)} \right)^{2} U_{2} \left( t \right) - 4{\kern 1pt} \left( {W_{1} \left( t \right)} \right)^{2} U_{2} \left( t \right) - 24{\kern 1pt} \left( {W_{2} \left( t \right)} \right)^{2} U_{2} \left( t \right)]\varepsilon^{3} \\ & \quad +\, \frac{1}{2}\sqrt 2 \pi^{3} A_{11} \left( {\left( {V_{1} \left( t \right)} \right)^{2} + {\kern 1pt} \left( {W_{1} \left( t \right)} \right)^{2} } \right)\varepsilon^{2} + \left[ {4{\kern 1pt} \pi^{2} A_{11} U_{2} \left( t \right) + \frac{16}{3}{\kern 1pt} \pi B_{16} \varphi_{1} \left( t \right) + \frac{{{\text{d}}^{2} }}{{{\text{d}}t^{2} }}U_{2} \left( t \right)} \right]\varepsilon = 0 \\ & \quad \left[ {\frac{3}{4}{\kern 1pt} \left( {V_{1} \left( t \right)} \right)^{3} - \frac{3}{2}V_{1} \left( t \right)\left( {U_{1} \left( t \right)} \right)^{2} - 8{\kern 1pt} V_{2} \left( t \right)U_{2} \left( t \right)U_{1} \left( t \right) + 6{\kern 1pt} V_{1} \left( t \right)\left( {V_{2} \left( t \right)} \right)^{2} } \right. \\ & \quad \left. { + 4{\kern 1pt} W_{2} \left( t \right)V_{2} \left( t \right)W_{1} \left( t \right) + 2{\kern 1pt} \left( {W_{2} \left( t \right)} \right)^{2} V_{1} \left( t \right) + \frac{3}{4}{\kern 1pt} \left( {W_{1} \left( t \right)} \right)^{2} V_{1} \left( t \right) - 4{\kern 1pt} V_{1} \left( t \right)\left( {U_{2} \left( t \right)} \right)^{2} } \right]\pi^{4} A_{11} \varepsilon^{3} \\ & \quad +\, \left( {\frac{\text{d}}{{{\text{d}}t}}V_{1} \left( t \right)} \right)c\varepsilon^{3} + \pi^{3} \sqrt 2 A_{11} \varepsilon^{2} \left( {U_{1} \left( t \right)V_{2} \left( t \right) + V_{1} \left( t \right)U_{2} \left( t \right)} \right) + \left[ {D_{11} \pi^{4} V_{1} \left( t \right) + I_{p} \varOmega \pi^{2} {\kern 1pt} \left( {\frac{\text{d}}{{{\text{d}}t}}W_{1} \left( t \right)} \right)} \right. \\ & \quad +\, \left. {\Omega ^{2} \sin \left( {\Omega {\kern 1pt} t} \right)e_{1,1} -\Omega ^{2} \cos \left( {\Omega {\kern 1pt} t} \right)e_{2,1} + \frac{{{\text{d}}^{2} }}{{{\text{d}}t^{2} }}V_{1} \left( t \right)} \right]\varepsilon = 0 \\ & \quad \left[ { - 4{\kern 1pt} \left( {U_{1} \left( t \right)} \right)^{2} V_{2} \left( t \right) - 8{\kern 1pt} U_{1} \left( t \right)V_{1} \left( t \right)U_{2} \left( t \right) + 6{\kern 1pt} \left( {V_{1} \left( t \right)} \right)^{2} V_{2} \left( t \right) + 4{\kern 1pt} V_{1} \left( t \right)W_{1} \left( t \right)W_{2} \left( t \right)} \right. \\ & \quad \left. { + 12{\kern 1pt} \left( {V_{2} \left( t \right)} \right)^{3} + 2{\kern 1pt} V_{2} \left( t \right)\left( {W_{1} \left( t \right)} \right)^{2} + 12{\kern 1pt} V_{2} \left( t \right)\left( {W_{2} \left( t \right)} \right)^{2} - 24{\kern 1pt} V_{2} \left( t \right)\left( {U_{2} \left( t \right)} \right)^{2} } \right]\pi^{4} A_{11} \varepsilon^{3} \\ & \quad +\, \varepsilon^{3} c{\kern 1pt} \frac{\text{d}}{{{\text{d}}t}}V_{2} \left( t \right) + \varepsilon^{2} \sqrt 2 \pi^{3} A_{11} V_{1} \left( t \right)U_{1} \left( t \right) + \left[ {16{\kern 1pt} D_{11} \pi^{4} V_{2} \left( t \right) + 4{\kern 1pt} I_{\text{p}}\Omega {\kern 1pt} \pi^{2} \left( {\frac{\text{d}}{{{\text{d}}t}}W_{2} \left( t \right)} \right)} \right. \\ & \quad \left. { +\Omega ^{2} \sin \left( {\Omega {\kern 1pt} t} \right)e_{1,2} -\Omega ^{2} \cos \left( {\Omega {\kern 1pt} t} \right)e_{2,2} + \frac{{{\text{d}}^{2} }}{{{\text{d}}t^{2} }}V_{2} \left( t \right)} \right]\varepsilon = 0 \\ & \quad \left[ {4{\kern 1pt} W_{2} \left( t \right)V_{2} \left( t \right)V_{1} \left( t \right) - 8{\kern 1pt} W_{2} \left( t \right)U_{2} \left( t \right)U_{1} \left( t \right) + \frac{3}{4}{\kern 1pt} {\kern 1pt} \left( {W_{1} \left( t \right)} \right)^{3} + \frac{3}{4}{\kern 1pt} W_{1} \left( t \right)\left( {V_{1} \left( t \right)} \right)^{2} } \right. \\ & \quad \left. { + 2{\kern 1pt} W_{1} \left( t \right)\left( {V_{2} \left( t \right)} \right)^{2} + 6{\kern 1pt} W_{1} \left( t \right)\left( {W_{2} \left( t \right)} \right)^{2} - 4{\kern 1pt} W_{1} \left( t \right)\left( {U_{2} \left( t \right)} \right)^{2} - \frac{3}{2}{\kern 1pt} W_{1} \left( t \right)\left( {U_{1} \left( t \right)} \right)^{2} } \right]\pi^{4} A_{11} \varepsilon^{3} \\ & \quad +\, \varepsilon^{3} c{\kern 1pt} \frac{\text{d}}{{{\text{d}}t}}W_{1} \left( t \right) + \varepsilon^{2} A_{11} \pi^{3} \sqrt 2 \left( {W_{2} \left( t \right)U_{1} \left( t \right) + U_{2} \left( t \right)W_{1} \left( t \right)} \right) + \left[ {D_{11} \pi^{4} W_{1} \left( t \right)} \right. \\ & \quad \left. { - I_{\text{p}}\Omega \pi^{2} {\kern 1pt} \left( {\frac{\text{d}}{{{\text{d}}t}}V_{1} \left( t \right)} \right) -\Omega ^{2} \cos \left( {\Omega {\kern 1pt} t} \right)e_{1,1} -\Omega ^{2} \sin \left( {\Omega {\kern 1pt} t} \right)e_{1,1} + \frac{{{\text{d}}^{2} }}{{{\text{d}}t^{2} }}W_{1} \left( t \right)} \right]\varepsilon = 0 \\ & \quad \left[ {12{\kern 1pt} \left( {W_{2} \left( t \right)} \right)^{3} + 12{\kern 1pt} W_{2} \left( t \right)\left( {V_{2} \left( t \right)} \right)^{2} + 2{\kern 1pt} W_{2} \left( t \right)\left( {V_{1} \left( t \right)} \right)^{2} - 24{\kern 1pt} W_{2} \left( t \right)\left( {U_{2} \left( t \right)} \right)^{2} } \right. \\ & \quad \left. { - 4{\kern 1pt} W_{2} \left( t \right)\left( {U_{1} \left( t \right)} \right)^{2} + 6{\kern 1pt} W_{2} \left( t \right)\left( {W_{1} \left( t \right)} \right)^{2} + 4{\kern 1pt} V_{2} \left( t \right)V_{1} \left( t \right)W_{1} \left( t \right) - 8{\kern 1pt} U_{2} \left( t \right)U_{1} \left( t \right)W_{1} \left( t \right)} \right]\pi^{4} A_{11} \varepsilon^{3} \\ & \quad +\, \varepsilon^{3} c{\kern 1pt} \frac{\text{d}}{{{\text{d}}t}}W_{2} \left( t \right) + \varepsilon^{2} \sqrt 2 \pi^{3} A_{11} W_{1} \left( t \right)U_{1} \left( t \right) + \left[ {16{\kern 1pt} \pi^{4} D_{11} W_{2} \left( t \right) - 4{\kern 1pt} \pi^{2} I_{\text{p}}\Omega {\kern 1pt} \left( {\frac{\text{d}}{{{\text{d}}t}}V_{2} \left( t \right)} \right)} \right. \\ & \quad \left. { -\Omega ^{2} \cos \left( {\Omega {\kern 1pt} t} \right)e_{1,2} -\Omega ^{2} \sin \left( {\Omega {\kern 1pt} t} \right)e_{2,2} + \frac{{{\text{d}}^{2} }}{{{\text{d}}t^{2} }}W_{2} \left( t \right)} \right]\varepsilon = 0 \\ & \quad \left( { - 8{\kern 1pt} U_{2} \left( t \right)V_{1} \left( t \right)W_{2} \left( t \right) - \frac{3}{2}{\kern 1pt} U_{1} \left( t \right)V_{1} \left( t \right)W_{1} \left( t \right) - 4{\kern 1pt} U_{1} \left( t \right)V_{2} \left( t \right)W_{2} \left( t \right)} \right)\pi^{5} D_{66} \varepsilon^{3} \\ & \quad +\, \pi^{4} \sqrt 2 \varepsilon^{2} D_{66} \left( { - W_{2} \left( t \right)V_{1} \left( t \right) + 2{\kern 1pt} V_{2} \left( t \right)W_{1} \left( t \right)} \right) + \left[ {\pi^{2} D_{66} \varphi_{1} \left( t \right) + \frac{{{\text{d}}^{2} }}{{{\text{d}}t^{2} }}\varphi_{1} \left( t \right) + \frac{{64{\kern 1pt} }}{3}B_{16} U_{2} \left( t \right)\pi } \right]\varepsilon = 0 \\ & \quad \left( { - 48{\kern 1pt} W_{2} \left( t \right)V_{2} \left( t \right)U_{2} \left( t \right) - 16{\kern 1pt} V_{2} \left( t \right)U_{1} \left( t \right)W_{1} \left( t \right) - 8{\kern 1pt} V_{1} \left( t \right)U_{2} \left( t \right)W_{1} \left( t \right)} \right)\pi^{5} D_{66} \varepsilon^{3} \\ & \quad +\, \pi^{4} \varepsilon^{2} \sqrt 2 D_{66} V_{1} \left( t \right)W_{1} \left( t \right) + \left[ {4{\kern 1pt} \pi^{2} D_{66} \varphi_{2} \left( t \right) - \frac{8}{3}\pi {\kern 1pt} B_{16} U_{1} \left( t \right) + \frac{{{\text{d}}^{2} }}{{{\text{d}}t^{2} }}\varphi_{2} \left( t \right)} \right]\varepsilon = 0 \\ \end{aligned} $$

    where

    $$ \begin{aligned} & e_{1,i} = \int_{0}^{1} {[\sqrt 2 e_{y} (x)\sin (i\pi x)]{\text{d}}x} \\ & e_{2,j} = \int_{0}^{1} {[\sqrt 2 e_{z} (x)\sin (j\pi x)]{\text{d}}x} \\ \end{aligned} $$
  4. 4.

    Natural frequencies obtained for two-mode discretization are [20]

    $$ \begin{aligned} & \omega_{f,1} = - \frac{1}{2}i\sqrt { - 2{\mkern 1mu} \sqrt {\pi^{8} I_{\text{p}}^{2}\Omega ^{2} \left( {I_{p}^{2}\Omega ^{2} + 4{\mkern 1mu} D_{11} } \right)} + \left( { - 4{\mkern 1mu} D_{11} - 2{\mkern 1mu} I_{p}^{2}\Omega ^{2} } \right)\pi^{4} } \\ & \omega_{b,1} = - \frac{1}{2}i\sqrt {2{\mkern 1mu} \sqrt {\pi^{8} I_{\text{p}}^{2}\Omega ^{2} \left( {I_{\text{p}}^{2}\Omega ^{2} + 4{\mkern 1mu} D_{11} } \right)} + \left( { - 4{\mkern 1mu} D_{11} - 2{\mkern 1mu} I_{\text{p}}^{2}\Omega ^{2} } \right)\pi^{4} } \\ & \omega_{f,2} = - 2i\sqrt { - 2{\mkern 1mu} \sqrt {\pi^{8} I_{\text{p}}^{2}\Omega ^{2} \left( {I_{\text{p}}^{2}\Omega ^{2} + 4{\mkern 1mu} D_{11} } \right)} + \left( { - 4{\mkern 1mu} D_{11} - 2{\mkern 1mu} I_{\text{p}}^{2}\Omega ^{2} } \right)\pi^{4} } \\ & \omega_{b,2} = - 2i\sqrt {2{\mkern 1mu} \sqrt {\pi^{8} I_{\text{p}}^{2}\Omega ^{2} \left( {I_{\text{p}}^{2}\Omega ^{2} + 4{\mkern 1mu} D_{11} } \right)} + \left( { - 4{\mkern 1mu} D_{11} - 2{\mkern 1mu} I_{\text{p}}^{2}\Omega ^{2} } \right)\pi^{4} } \\ & \omega_{u1} = - \frac{1}{6}i\sqrt { - 6{\mkern 1mu} \sqrt 9 \sqrt {\left( {\left( {A_{11} - 4{\mkern 1mu} D_{66} } \right)^{2} \pi^{2} + \frac{1024}{9}{\mkern 1mu} B_{16}^{2} } \right)\pi^{2} } + \left( { - 72{\mkern 1mu} D_{66} - 18{\mkern 1mu} A_{11} } \right)\pi^{2} } \\ & \omega_{u2} = - \frac{1}{6}i\sqrt { - 6{\mkern 1mu} \sqrt {144} \sqrt {\left( {\left( {A_{11} - \frac{1}{4}{\mkern 1mu} D_{66} } \right)^{2} \pi^{2} + \frac{256}{9}{\mkern 1mu} B_{16}^{2} } \right)\pi^{2} } + \left( { - 18{\mkern 1mu} D_{66} - 72{\mkern 1mu} A_{11} } \right)\pi^{2} } \\ & \omega_{\varphi 1} = - \frac{1}{6}{\mkern 1mu} i\sqrt {6{\mkern 1mu} \sqrt {144} \sqrt {\left( {\left( {A1 - \frac{1}{4}{\mkern 1mu} D_{66} } \right)^{2} \pi^{2} + \frac{256}{9}{\mkern 1mu} B_{16}^{2} } \right)\pi^{2} } + \left( { - 18{\mkern 1mu} D_{66} - 72{\mkern 1mu} A_{11} } \right)\pi^{2} } \\ & \omega_{\varphi 2} = \, - \frac{1}{6}{\mkern 1mu} i\sqrt {6{\mkern 1mu} \sqrt 9 \sqrt {\left( {\left( {A_{11} - 4{\mkern 1mu} D_{66} } \right)^{2} \pi^{2} + \frac{1024}{9}{\mkern 1mu} B_{16}^{2} } \right)\pi^{2} } + \left( { - 72{\mkern 1mu} D_{66} - 18{\mkern 1mu} A_{11} } \right)\pi^{2} } \\ \end{aligned} $$
  5. 5.

    Coefficients introduced in Eq. (46) are defined

    $$ \begin{aligned}\Gamma _{1} & = \pi^{4} A_{11} \left( {P_{{{\text{f}},1}} } \right)\left( t \right)\left( {4{\kern 1pt} \cos \left( {\beta_{2} \left( t \right) - \beta_{1} \left( t \right)} \right)P_{1} \left( t \right)^{2} - G_{1} \left( t \right)^{2} - H_{2} \left( t \right)^{2} + \frac{11}{4}{\kern 1pt} P_{1} \left( t \right)^{2} + \frac{3}{4}{\kern 1pt} P_{{{\text{b}},1}} \left( t \right)^{2} + 2{\kern 1pt} P_{{{\text{f}},2}} \left( t \right)^{2} - \frac{3}{8}H_{1} \left( t \right)^{2} - \frac{3}{8}{\kern 1pt} G_{2} \left( t \right)^{2} } \right) \\ & \quad + \pi^{4} A_{11} \left( {\frac{3}{8}{\kern 1pt} P_{{{\text{f}},1}} \left( t \right)^{3} + 2{\kern 1pt} \cos \left( {\beta_{1} \left( t \right) - \psi \left( t \right)} \right)P_{{{\text{f}},2}} \left( t \right)P_{1} \left( t \right)P_{{{\text{b}},1}} \left( t \right) + 2{\kern 1pt} \cos \left( {\beta_{2} \left( t \right) - \psi \left( t \right)} \right)P_{{{\text{f}},2}} \left( t \right)P_{1} \left( t \right)P_{{{\text{b}},1}} \left( t \right)} \right) \\ & \quad + \frac{1}{2}P_{{{\text{f}},1}} \left( t \right)\left( {\pi^{2} I_{\text{p}} {\kern 1pt} \left[ {\omega_{{{\text{f}},1}} \sigma {\kern 1pt} + {\kern 1pt} \omega_{{{\text{f}},1}} \omega_{{{\text{f}},2}} - {\kern 1pt} \omega_{{{\text{f}},1}} \omega_{{{\text{b}},1}} + \omega_{{{\text{f}},1}}^{2} } \right] + {\kern 1pt} D_{11} \pi^{4} - {\kern 1pt} \omega_{{{\text{f}},1}}^{2} } \right) \\\Gamma _{2} & = \pi^{4} A_{11} P_{{{\text{f}},2}} \left( t \right)\left( {4{\kern 1pt} \cos \left( {\beta_{2} \left( t \right) - \beta_{1} \left( t \right)} \right)P_{1} \left( t \right)^{2} + 14{\kern 1pt} P_{1} \left( t \right)^{2} + 2{\kern 1pt} P_{{{\text{f}},1}} \left( t \right)^{2} - 6{\kern 1pt} G_{1} \left( t \right)^{2} - 6{\kern 1pt} H_{2} \left( t \right)^{2} - G_{2} \left( t \right)^{2} - H_{1} \left( t \right)^{2} + 2{\kern 1pt} P_{{{\text{b}},1}} \left( t \right)^{2} } \right) \\ & \quad + \pi^{4} A_{11} \left( {6{\kern 1pt} P_{{{\text{f}},2}} \left( t \right)^{3} + \frac{3}{4}\cos \left( {\beta_{1} \left( t \right) - \psi \left( t \right)} \right)P_{{{\text{f}},1}} \left( t \right)P_{1} \left( t \right)P_{{{\text{b}},1}} \left( t \right) + 2{\kern 1pt} \cos \left( {\beta_{2} \left( t \right) - \psi \left( t \right)} \right)P_{1} \left( t \right)P_{{{\text{f}},1}} \left( t \right)P_{{{\text{b}},1}} \left( t \right)} \right) \\ & \quad + 2\pi^{2} I_{\text{p}} P_{{{\text{f}},2}} \left( t \right)\left( {\omega_{{{\text{f}},2}}^{2} + \omega_{{{\text{f}},1}} \omega_{{{\text{f}},2}} - \omega_{{{\text{f}},2}} \omega_{{{\text{b}},1}} + \omega_{{{\text{f}},2}} \sigma {\kern 1pt} } \right) + P_{{{\text{f}},2}} \left( t \right)\left( {8{\kern 1pt} D_{11} \pi^{4} - \frac{1}{2}{\kern 1pt} \omega_{{{\text{f}},2}}^{2} } \right) \\\Gamma _{3} & = \pi^{4} A_{11} P_{{{\text{b}},1}} \left( t \right)\left( {4{\kern 1pt} \cos \left( {\beta_{2} \left( t \right) - \beta_{1} \left( t \right)} \right)P_{1} \left( t \right)^{2} - G_{1} \left( t \right)^{2} - H_{2} \left( t \right)^{2} + \frac{3}{4}P_{{{\text{f}},1}} \left( t \right)^{2} + \frac{11}{4}{\kern 1pt} P_{1} \left( t \right)^{2} - \frac{3}{8}{\kern 1pt} G_{2} \left( t \right)^{2} + 2{\kern 1pt} P_{{{\text{f}},2}} \left( t \right)^{2} - \frac{3}{8}{\kern 1pt} H_{1} \left( t \right)^{2} } \right) \\ & \quad + \pi^{4} A_{11} \left( {\frac{3}{8}{\kern 1pt} P_{{{\text{b}},1}} \left( t \right)^{3} + 2{\kern 1pt} \cos \left( {\beta_{1} \left( t \right) - \psi \left( t \right)} \right)P_{{{\text{f}},2}} \left( t \right)P_{{{\text{f}},1}} \left( t \right)P_{1} \left( t \right) + 2{\kern 1pt} \cos \left( {\beta_{2} \left( t \right) - \psi \left( t \right)} \right)P_{{{\text{f}},2}} \left( t \right)P_{1} \left( t \right)P_{{{\text{f}},1}} \left( t \right)} \right) \\ & \quad + \frac{1}{2}P_{{{\text{b}},1}} \left( t \right)\left( {\pi^{2} I_{\text{p}} \left[ {\omega_{{{\text{f}},2}} \omega_{{{\text{b}},1}} + {\kern 1pt} \sigma {\kern 1pt} \omega_{{{\text{b}},1}} + \omega_{{{\text{f}},1}} \omega_{{{\text{b}},1}} - {\kern 1pt} \omega_{{{\text{b}},1}}^{2} } \right]{\kern 1pt} + {\kern 1pt} D_{11} \pi^{4} - {\kern 1pt} \omega_{{{\text{b}},1}}^{2} } \right) \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaban Ali Nezhad, H., Hosseini, S.A.A. & Moradi Tiaki, M. Combination resonances of spinning composite shafts considering geometric nonlinearity. J Braz. Soc. Mech. Sci. Eng. 41, 515 (2019). https://doi.org/10.1007/s40430-019-2009-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-2009-z

Keywords

Navigation