Skip to main content
Log in

EDM performance of Inconel 718 superalloy: application of multi-walled carbon nanotube (MWCNT) added dielectric media

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Electro-discharge machining (EDM) is very promising non-traditional machining route to cut ‘difficult-to-machine’ materials like Inconel 718 superalloy. However, low material removal efficiency and inferior surface integrity restricts EDM application on Inconel 718. In order to improve EDM performance, multi-walled carbon nanotube (MWCNT) dispersed into kerosene is explored as dielectric media. Experiments are conducted by varying peak discharge current with a fixed concentration of MWCNT (0.5 g/l) added to kerosene. EDM performance is assessed in purview of material removal efficiency, tool wear rate, and surface integrity (morphology and topography) of the EDMed specimen. Apart from morphological study, surface topography including surface roughness, crack density, recast layer thickness, metallographic alteration, residual stress, and micro-indentation hardness of the machined specimen are studied in detail. It is concluded that as compared to conventional EDM, use of MWCNT-mixed dielectric media (0.5 g/l) significantly improves machining performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Ezugwu EO, Wang ZM, Machado AR (1999) The machinability of nickel-based alloys: a review. J Mater Process Technol 86(1–3):1–16

    Google Scholar 

  2. Darwish SM (2000) Machining of difficult-to-cut materials with bonded tools. Int J Adhes Adhes 20(4):279–289

    Google Scholar 

  3. Arunachalam R, Mannan MA (2000) Machinability of nickel-based high temperature alloys. Mach Sci Technol 4(1):127–168

    Google Scholar 

  4. Ezugwu EO (2005) Key improvements in the machining of difficult-to-cut aerospace superalloys. Int J Mach Tools Manuf 45(12–13):1353–1367

    Google Scholar 

  5. Kishawy HA, Hosseini A (2019) Machining difficult-to-cut materials: basic principles and challenges, 1st edn. Springer, Cham

    Google Scholar 

  6. Muthuramalingam T, Mohan B (2015) A review on influence of electrical process parameters in EDM process. Arch Civ Mech Eng 15(1):87–94

    Google Scholar 

  7. Singh H (2012) Experimental study of distribution of energy during EDM process for utilization in thermal models. Int J Heat Mass Transf 55(19–20):5053–5064

    Google Scholar 

  8. Singh H, Shukla DK (2012) Optimizing electric discharge machining parameters for tungsten-carbide utilizing thermo-mathematical modeling. Int J Therm Sci 59:161–175

    Google Scholar 

  9. Rajurkar KP (1994) Handbook of design manufacturing and automation. Chapter 13: nontraditional manufacturing processes. Wiley, New York

    Google Scholar 

  10. Kansal HK, Singh S, Kumar P (2005) Parametric optimization of powder mixed electrical discharge machining by response surface methodology. J Mater Process Technol 169(3):427–436

    Google Scholar 

  11. Abbas NM, Solomon DG, Bahari MF (2007) A review on current research trends in electrical discharge machining (EDM). Int J Mach Tools Manuf 47(7–8):1214–1228

    Google Scholar 

  12. Garg RK, Singh KK, Sachdeva A, Sharma VS, Ojha K, Singh S (2010) Review of research work in sinking EDM and WEDM on metal matrix composite materials. Int J Adv Manuf Technol 50(5–8):611–624

    Google Scholar 

  13. Alavi F, Jahan MP (2017) Optimization of process parameters in micro-EDM of Ti–6Al–4V based on full factorial design. Int J Adv Manuf Technol 92(1–4):167–187

    Google Scholar 

  14. Kansal HK, Singh S, Kumar P (2006) An experimental study of the machining parameters in powder mixed electric discharge machining of Al–10%SiCp metal matrix composites. Int J Mach Mach Mater 1(4):396–411

    Google Scholar 

  15. Kansal HK, Singh S, Kumar P (2007) Technology and research developments in powder mixed electric discharge machining (PMEDM). J Mater Process Technol 184(1–3):32–41

    Google Scholar 

  16. Prabhu S, Vinayagam BK (2010) Analysis of surface characteristics of AISI D2 tool steelmaterial using electric discharge machining process with single wall carbonnano tubes. Int J Eng Technol 2(1):35–41

    Google Scholar 

  17. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Google Scholar 

  18. Chakraborty S, Dey V, Ghosh SK (2015) A review on the use of dielectric fluids and their effects in electrical discharge machining characteristics. Precis Eng 40:1–6

    Google Scholar 

  19. Wang X, Liu Z, Xue R, Tian Z, Huang Y (2014) Research on the influence of dielectric characteristics on the EDM of titanium alloy. Int J Adv Manuf Technol 72(5–8):979–987

    Google Scholar 

  20. Marashi H, Jafarlou DM, Sarhan AAD, Hamdi M (2016) State of the art in powder mixed dielectric for EDM applications. Precis Eng 46:11–33

    Google Scholar 

  21. Talla G, Gangopadhayay S, Biswas CK (2017) State of the art in powder-mixed electric discharge machining: a review. Proc IMechE Part B J Eng Manuf 231(14):2511–2526

    Google Scholar 

  22. Bajaj R, Tiwari AK, Dixit AR (2015) Current trends in electric discharge machining using micro and nanopowder materials—a review. Mater Today Proc 2:3302–3307

    Google Scholar 

  23. Tzeng YF, Lee CY (2001) Effects of powder characteristics on electrodischarge machining efficiency. Int J Adv Manuf Technol 17(8):586–592

    Google Scholar 

  24. Yih-fong T, Fu-chen C (2005) Investigation into some surface characteristics of electrical discharge machined SKD-11 using powder-suspension dielectric oil. J Mater Process Technol 170(1–2):385–391

    Google Scholar 

  25. Peças P, Henriques E (2008) Effect of the powder concentration and dielectric flow in the surface morphology in electrical discharge machining with powder-mixed dielectric (PMD-EDM). Int J Adv Manuf Technol 37(11–12):1120–1132

    Google Scholar 

  26. Peças P, Henriques E (2008) Electrical discharge machining using simple and powder-mixed dielectric: the effect of the electrode area in the surface roughness and topography. J Mater Process Technol 200(1–3):250–258

    Google Scholar 

  27. Kung KY, Horng JT, Chiang KT (2009) Material removal rate and electrode wear ratio study on the powder mixed electrical discharge machining of cobalt-bonded tungsten carbide. Int J Adv Manuf Technol 40(1–2):95–104

    Google Scholar 

  28. Bhattacharya A, Batish A, Singh G, Singla VK (2012) Optimal parameter settings for rough and finish machining of die steels in powder-mixed EDM. Int J Adv Manuf Technol 61(5–8):537–548

    Google Scholar 

  29. Singh S, Yeh MF (2012) Optimization of abrasive powder mixed EDM of aluminum matrix composites with multiple responses using gray relational analysis. J Mater Eng Perfom 21(4):481–491

    Google Scholar 

  30. Syed KH, Palaniyandi K (2012) Performance of electrical discharge machining using aluminium powder suspended distilled water. Turk J Eng Environ Sci 36:195–207

    Google Scholar 

  31. Kumar S, Batra U (2012) Surface modification of die steel materials by EDM method using tungsten powder-mixed dielectric. J Manuf Process 14(1):35–40

    Google Scholar 

  32. Bai X, Zhang QH, Yang TY, Zhang JH (2013) Research on material removal rate of powder mixed near dry electrical discharge machining. Int J Adv Manuf Technol 68(5–8):1757–1766

    Google Scholar 

  33. Prihandana GS, Sriani T, Mahardika M, Hamdi M, Miki N, Wong YS, Mitsui K (2014) Application of powder suspended in dielectric fluid for fine finish micro-EDM of Inconel 718. Int J Adv Manuf Technol 75(1–4):599–613

    Google Scholar 

  34. Klocke F, Lung D, Antonoglou G, Thomaidis D (2004) The effects of powder suspended dielectrics on the thermal influenced zone by electrodischarge machining with small discharge energies. J Mater Process Technol 149(1–3):191–197

    Google Scholar 

  35. Batish A, Bhattacharya A, Kumar N (2015) Powder mixed dielectric: an approach for improved process performance in EDM. Part Sci Technol 33(2):150–158

    Google Scholar 

  36. Singh B, Kumar J, Kumar S (2015) Influences of process parameters on MRR improvement in simple and powder-mixed EDM of AA6061/10%SiC composite. Mater Manuf Process 30(3):303–312

    MathSciNet  Google Scholar 

  37. Singh AK, Kumar S, Singh VP (2015) Effect of the addition of conductive powder in dielectric on the surface properties of superalloy Super Co 605 by EDM process. Int J Adv Manuf Technol 77(1–4):99–106

    Google Scholar 

  38. Talla G, Sahoo DK, Gangopadhyay S, Biswas CK (2015) Modeling and multi-objective optimization of powder mixed electric discharge machining process of aluminum/alumina metal matrix composite. Eng Sci Technol Int J 18(3):369–373

    Google Scholar 

  39. Al-Khazraji A, Amin SA, Ali SM (2016) The effect of SiC powder mixing electrical discharge machining on white layer thickness, heat flux and fatigue life of AISI D2 die steel. Eng Sci Technol Int J 19(3):1400–1415

    Google Scholar 

  40. Talla G, Gangopadhyay S, Biswas CK (2016) Effect of powder-suspended dielectric on the EDM characteristics of Inconel 625. J Mater Eng Perform 25(2):704–717

    Google Scholar 

  41. Talla G, Gangopadhyay S, Biswas CK (2017) Influence of graphite powder mixed EDM on the surface integrity characteristics of Inconel 625. Part Sci Technol 35(2):219–226

    Google Scholar 

  42. Singh J, Sharma RK (2017) Multi-objective optimization of green powder-mixed electrical discharge machining of tungsten carbide alloy. Proc IMechE Part C J Mech Eng Sci. https://doi.org/10.1177/0954406217727306

    Article  Google Scholar 

  43. Banh TL, Nguyen HP, Ngo C, Nguyen DT (2018) Characteristics optimization of powder mixed electric discharge machining using titanium powder for die steel materials. Proc IMechE Part E J Proc Mech Eng 232(3):281–298

    Google Scholar 

  44. Talla G, Gangopadhyay S (2018) Effect of impregnated powder materials on surface integrity aspects of Inconel 625 during electrical discharge machining. Proc IMechE Part B J Eng Manuf 232(7):1259–1272

    Google Scholar 

  45. Ramesh S, Jenarthanan MP, Bhuvanesh Kanna AS (2018) Experimental investigation of powder mixed electric discharge machining of AISI P20 steel using different powders and tool materials. Multidiscip Model Mater Struct. https://doi.org/10.1108/MMMS-04-2017-0025

    Article  Google Scholar 

  46. Kibria G, Sarkar BR, Pradhan BB, Bhattacharyya B (2010) Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti–6Al–4V alloy. Int J Adv Manuf Technol 48(5–8):557–570

    Google Scholar 

  47. Unses E, Cogun C (2015) Improvement of electric discharge machining (EDM) performance of Ti–6Al–4V alloy with added graphite powder to dielectric. Strojniški vestnik J Mech Eng 61(6):409–418

    Google Scholar 

  48. Kolli M, Kumar A (2017) Surfactant and graphite powder-assisted electrical discharge machining of titanium alloy. Proc IMechE Part B J Eng Manuf 231(4):641–657

    Google Scholar 

  49. Ekmekci N, Ekmekci B (2016) Electrical discharge machining of Ti–6Al–4V in hydroxyapatite powder mixed dielectric liquid. Mater Manuf Process 31(13):1663–1670

    Google Scholar 

  50. Kuriachen B, Mathew J (2016) Effect of powder mixed dielectric on material removal and surface modification in microelectric discharge machining of Ti–6Al–4V. Mater Manuf Process 31(4):439–446

    Google Scholar 

  51. Prakash C, Kansal HK, Pabla BS, Puri S (2017) Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy. Mater Manuf Process 32(3):274–285

    Google Scholar 

  52. Li L, Zhao L, Li ZY, Feng L, Bai X (2017) Surface characteristics of Ti–6Al–4V by SiC abrasive-mixed EDM with magnetic stirring. Mater Manuf Process 32(1):83–86

    Google Scholar 

  53. Kumar S, Singh R, Batish A, Singh TP (2017) Modeling the tool wear rate in powder mixed electro-discharge machining of titanium alloys using dimensional analysis of cryogenically treated electrodes and workpiece. Proc IMechE Part E J Process Mech Eng 231(2):271–282

    Google Scholar 

  54. Tiwary AP, Pradhan BB, Bhattacharyya B (2018) Investigation on the effect of dielectrics during micro-electro-discharge machining of Ti–6Al–4V. Int J Adv Manuf Technol 95(1–4):861–874

    Google Scholar 

  55. Prihandana GS, Mahardika M, Hamdi M, Wong YS, Mitsui K (2011) Accuracy improvement in nanographite powder-suspended dielectric fluid for micro-electrical discharge machining processes. Int J Adv Manuf Technol 56(1–4):143–149

    Google Scholar 

  56. Jahan MP, Rahman M, Wong YS (2011) Study on the nano-powder-mixed sinking and milling micro-EDM of WC-Co. Int J Adv Manuf Technol 53(1–4):167–180

    Google Scholar 

  57. Tan PC, Yeo SH (2013) Simulation of surface integrity for nanopowder-mixed dielectric in micro electrical discharge machining. Metall Mater Trans B 44B:711–721

    Google Scholar 

  58. Marashi H, Sarhan AAD, Hamdi M (2015) Employing Ti nano-powder dielectric to enhance surface characteristics in electrical discharge machining of AISI D2 steel. Appl Surf Sci 357(Part A):892–907

    Google Scholar 

  59. Baseri H, Sadeghian S (2016) Effects of nanopowder TiO2-mixed dielectric and rotary tool on EDM. Int J Adv Manuf Technol 83(1–4):519–528

    Google Scholar 

  60. Kumar A, Mandal A, Dixit AR, Das AK (2018) Performance evaluation of Al2O3 nano powder mixed dielectric for electric discharge machining of Inconel 825. Mater Manuf Process 33(9):986–995

    Google Scholar 

  61. Chaudhury P, Samantaray S (2017) Role of carbon nano tubes in surface modification on electrical discharge machining—a review. Mater Today Proc 4:4079–4088

    Google Scholar 

  62. Dresselhaus MS, Dresselhaus G, Charlier JC, Hernandez E (2004) Electronic, thermal and mechanical properties of carbon nanotubes. Philos Trans R Soc Lond A 362(1862):2065–2098

    Google Scholar 

  63. Prabhu S, Vinayagam BK (2011) AFM surface investigation of Inconel 825 with multi wall carbon nano tube in electrical discharge machining process using Taguchi analysis. Arch Civ Mech Eng 11(1):149–170

    Google Scholar 

  64. Mai C, Hocheng H, Huang S (2012) Advantages of carbon nanotubes in electrical discharge machining. Int J Adv Manuf Technol 59(1–4):111–117

    Google Scholar 

  65. Prabhu S, Vinayagam BK (2013) AFM nano analysis of Inconel 825 with single wall carbon nano tube in die sinking EDM process using Taguchi analysis. Arab J Sci Eng 38(6):1599–1613

    Google Scholar 

  66. Sari MM, Noordin MY, Brusa E (2013) Role of multi-wall carbon nanotubes on the main parameters of the electrical discharge machining (EDM) process. Int J Adv Manuf Technol 68(5–8):1095–1102

    Google Scholar 

  67. Prabhu S, Uma M, Vinayagam BK (2014) Electrical discharge machining parameters optimization using response surface methodology and fuzzy logic modeling. J Braz Soc Mech Sci Eng 36(3):637–652

    Google Scholar 

  68. Kumar H (2015) Development of mirror like surface characteristics using nano powder mixed electric discharge machining (NPMEDM). Int J Adv Manuf Technol 76(1–4):105–113

    Google Scholar 

  69. Prabhu S, Vinayagam BK (2016) Optimization of carbon nanotube based electrical discharge machining parameters using full factorial design and genetic algorithm. Aust J Mech Eng 14(3):161–173

    Google Scholar 

  70. Shabgard M, Khosrozadeh B (2017) Investigation of carbon nanotube added dielectric on the surface characteristics and machining performance of Ti–6Al–4V alloy in EDM process. J Manuf Process 25:212–219

    Google Scholar 

  71. Mohal S, Kumar H (2017) Study on the multiwalled carbon nano tube mixed EDM of Al–SiCp metal matrix composite. Mater Today Proc 4:3987–3993

    Google Scholar 

  72. Mohal S, Kumar H (2017) Parametric optimization of multiwalled carbon nanotube-assisted electric discharge machining of Al–10%SiCp metal matrix composite by response surface methodology. Mater Manuf Process 32(3):263–273

    Google Scholar 

  73. Mamalis AG, Vogtländer LOG, Markopoulos A (2004) Nanotechnology and nanostructured materials: trends in carbon nanotubes. Precis Eng 28(1):16–30

    Google Scholar 

  74. Henrich F, Chan C, Moore V, Rolandi M, O’Connell M (2006) Carbon nanotubes, properties and applications. Taylor and Francis, New York

    Google Scholar 

  75. Ay M, Çaydas U, Hasçalık A (2013) Optimization of micro-EDM drilling of Inconel 718 superalloy. Int J Adv Manuf Technol 66(5–8):1015–1023

    Google Scholar 

  76. Rahul, Abhishek K, Datta S, Biswal BB, Mahapatra SS (2017) Machining performance optimization for electro dis-charge machining of Inconel 601, 625, 718 and 825: an integrated optimization route combining satisfaction function, fuzzy inference system and Taguchi approach. J Braz Soc Mech Sci Eng 39(9):3499–3627

    Google Scholar 

  77. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison Wesley, Boston, p 470

    Google Scholar 

  78. Kansal HK, Singh S, Kumar P (2007) Effect of silicon powder mixed EDM on machining rate of AISI D2 die steel. J Manuf Process 9(1):13–22

    Google Scholar 

  79. Wong YS, Lim LC, Rahuman I, Tee WM (1998) Near-mirror-finish phenomenon in EDM using powder-mixed dielectric. J Mater Process Technol 79(1–3):30–40

    Google Scholar 

  80. Pecas P, Henriques EA (2002) Emerging technologies in penetration EDM. O Molde 55:26–36

    Google Scholar 

  81. Zhao WS, Meng QG, Wang ZL (2002) The application of research on powder mixed EDM in rough machining. J Mater Process Technol 129(1–3):30–33

    Google Scholar 

  82. Kansal HK, Singh S, Kumar P (2008) Numerical simulation of powder mixed electric discharge machining (PMEDM) using finite element method. Math Comput Model 47(11–12):1217–1237

    MATH  Google Scholar 

  83. Mascaraque-Ramirez C, Franco P (2015) Experimental study of surface finish during electro-discharge machining of stainless steel. Proc Eng 132:679–685

    Google Scholar 

  84. Neyestanak AAL, Daneshmand S (2013) The effect of operational cutting parameters on Nitinol-60 in wire electro-discharge machining. Adv Mater Sci Eng, Article ID 457186:1–6

  85. Choudhary R, Kumar H, Garg RK (2010) Analysis and evaluation of heat affected zones in electric discharge machining of EN-31 die steel. Indian J Eng Mater Sci 17:91–98

    Google Scholar 

  86. Soni H, Sannayellappa N, Motagondanahalli Rangarasaiah R (2017) An experimental study of influence of wire electro discharge machining parameters on surface integrity of TiNiCo shape memory alloy. J Mater Res 32:1–9

    Google Scholar 

  87. Soni H, Narendranath S, Ramesh MR (2018) Experimental investigation on effects of wire electro discharge machining of Ti50Ni45Co5 shape memory alloys. Silicon 10:2483–2490

    Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the support rendered by Dr. Francisco Ricardo Cunha, Editor-In-Chief, Journal of the Brazilian Society of Mechanical Sciences and Engineering (BMSE). Special thank goes to the anonymous reviewers for their constructive comments and suggestions that helped us to make the final paper a good contributor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurav Datta.

Additional information

Technical Editor: Lincoln Cardoso Brandao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadam, T., Sahu, S.K., Datta, S. et al. EDM performance of Inconel 718 superalloy: application of multi-walled carbon nanotube (MWCNT) added dielectric media. J Braz. Soc. Mech. Sci. Eng. 41, 305 (2019). https://doi.org/10.1007/s40430-019-1813-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1813-9

Keywords

Navigation