Skip to main content
Log in

Force on a spherical particle oscillating in a viscous fluid perpendicular to an impermeable planar wall

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The slow motion of a hard spherical particle embedded in a semi-infinite viscous fluid bounded by an impermeable plane wall is considered. The particle oscillates with small amplitude along a diameter perpendicular to the wall. At both surfaces of the particle and plane wall, the no-slip kinematic condition is used. An analytical procedure with a numerical solution based on collocation technique is considered. The solution is found to be accurate for the low and high frequency of oscillations. The drag force coefficients acting on the particle are plotted and tabulated against the frequency and the separation distance. The drag coefficients are found in good agreement with the corresponding problem of a steady case and with the oscillation of a particle embedded in an infinite viscous fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hocquart R, Hinch EJ (1983) The long-time tail of the angular-velocity autocorrelation function for a rigid Brownian particle of arbitrary centrally symmetric shape. J Fluid Mech 137:217–220

    Article  Google Scholar 

  2. Hurd AJ, Clarkn A, Mockler RC, O’Sullivan WJ (1985) Friction factors for a lattice of Brownian particles. J Fluid Mech 153:401–416

    Article  Google Scholar 

  3. O’Brien RW (1990) The electroacoustic equations for a colloidal suspension. J Fluid Mech 212:81–93

    Article  Google Scholar 

  4. Stokes GG (1922) On the effect of fluids on the motion of pendulums, transactions of the Cambridge philosophical society 9, 8. Reprinted in mathematical and physical papers III. Cambridge University Press, Cambridge

    Google Scholar 

  5. Brenner H (1961) The slow motion of a sphere through a viscous fluid towards a plane surface. Chem Eng Sci 16:242–251

    Article  Google Scholar 

  6. Cooley MDA, O’Neill ME (1969) On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere. Mathematika 16:34–49

    Article  Google Scholar 

  7. Chang YC, Keh HJ (2006) Slow motion of a slip spherical particle perpendicular to two plane walls. J Fluids Struct 22:647–661

    Article  Google Scholar 

  8. Haberman WL, Sayre RM (1958) Motion of rigid and fluid spheres in stationary and moving liquids inside cylindrical tubes. David Taylor Model Basin, Washington

    Book  Google Scholar 

  9. Brenner H (1971) Pressure drop due to the motion of neutrally buoyant particles in duct flows: II spherical droplets and bubbles. Ind Eng Chem Fundam 10:537–542

    Article  Google Scholar 

  10. Chadwick Richard S, Liao Zhijie (2008) High-frequency oscillations of a sphere in a viscous fluid near a rigid plane. SIAM Rev 50(2):313–322

    Article  MathSciNet  Google Scholar 

  11. Felderhof BU (2012) Hydrodynamic force on a particle oscillating in a viscous fluid near a wall with dynamic partial-slip boundary condition. Phys Rev E 85:046303

    Article  Google Scholar 

  12. Tabakova SS, Zapryanov ZD (1982) On the hydrodynamic interaction of two spheres oscillating in a viscous fluid—I Axisymmetrical case. ZAMP 33:344–357

    MATH  Google Scholar 

  13. Tabakova SS, Zapryanov ZD (1982) On the hydrodynamic interaction of two spheres oscillating in a viscous fluid—II three-dimensional case. ZAMP 33:487–502

    MATH  Google Scholar 

  14. Liu D, Zheng Y, Chen Q (2015) Grain-resolved simulation of micro-particle dynamics in shear and oscillatory flows, Comput Fluids 108:129–141

    Article  MathSciNet  Google Scholar 

  15. Faltas MS, Shreen E-S (2019) Rectilinear oscillations of two rigid spheres embedded in an unbounded viscous fluid. Microsyst Technol 25:39–49

    Article  Google Scholar 

  16. Gluckman MJ, Pfeffer R, Weinbaum S (1971) A new technique for treating multiparticle slow viscous flow: axisymmetric flow past spheres and spheroids. J Fluid Mech 50:705–740

    Article  MathSciNet  Google Scholar 

  17. Ganatos P, Weinbaum S, Pfeffer R (1980) A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries, Part 1. Perpendicular motion. J Fluid Mech 99:739–753

    Article  Google Scholar 

  18. Ganatos P, Weinbaum S, Pfeffer R (1980) A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries, Part 2. Parallel motion. J Fluid Mech 99:755–783

    Article  Google Scholar 

  19. Loewenberg M (1994) Axisymmetric unsteady Stokes flow past an oscillating finite-length cylinder. J Fluid Mech 265:265–288

    Article  Google Scholar 

  20. Loewenberg M, O’Brien RW (1992) The dynamic mobility of nonspherical particles. J Colloid Interface Sci 150:158–168

    Article  Google Scholar 

  21. Happel J, Brenner H (1983) Low Reynolds number hydrodynamics. Martinus Nijhoff Publications, Leiden

    MATH  Google Scholar 

  22. Sherief HH, Faltas MS, Saad EI (2008) Slip at the surface of a sphere translating perpendicular to a plane wall in micropolar fluid. ZAMP 59:293–312

    MathSciNet  MATH  Google Scholar 

  23. Kolodziej JA (1987) Review of application of boundary collocation methods in mechanics of continuous media. Solid Mech Arch 12:187–231

    MATH  Google Scholar 

  24. Kucaba-Pietal A (1999) Flow past a sphere moving towards a wall in micropolar fluid. J Theor Appl Mech 37:301–318

    MATH  Google Scholar 

  25. Sherief HH, Faltas MS, Ashmawy EA (2010) Axisymmetric translational motion of an arbitrary solid prolate body in a micropolar fluid. Fluid Dyn Res 42:1–18

    Article  Google Scholar 

  26. Sherief H, Faltas MS, Ashmawy EA (2011) Slow motion of a sphere moving normal to two infinite parallel plane walls in a micropolar fluid. Math Comput Model 53:376–386

    Article  MathSciNet  Google Scholar 

  27. Sherief H, Raslan W (2017) A 2D problem of thermoelasticity without energy dissipation for a sphere subjected to axi-symmetric temperature distribution. J Therm Stresses 40:1461–1470

    Article  Google Scholar 

  28. El-Sapa S, Saad EI, Faltas MS (2018) Axisymmetric motion of two spherical particles in a Brinkman medium with slip surfaces. Eur J Mech B Fluids 67:306–313

    Article  MathSciNet  Google Scholar 

  29. Sherief HH, Faltas MS, Shreen E-S (2017) A general formula for the drag on a solid of revolution body at low Reynolds numbers in a microstretch fluid. Meccanica 52(11–12):2655–2664

    Article  MathSciNet  Google Scholar 

  30. Lawrence CJ, Weinbaum S (1986) The force on an axisymmetric body in linearized time dependent motion. J Fluid Mech 171:209–218

    Article  Google Scholar 

  31. Payne LE, Pell WH (1960) The Stokes flow problem for a class of axially symmetric bodies. J Fluid Mech 7:529–549

    Article  MathSciNet  Google Scholar 

  32. Erdelyi A, Magnus W, Oberhettingerf F, Tricomtf G (1954) Tables of integral transforms, vol 2. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreen El-Sapa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Jader Barbosa Jr., Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The functions in Eqs. (60) and (61) are defined as

$$ A_{1n} (r,\theta ) = - (n + 1)r^{ - n - 1} \,G_{n + 1} \left( {\cos \theta } \right)\csc \theta , $$
(56)
$$ B_{1n} (r,\theta ) = - r^{{ - \tfrac{3}{2}}} \left( {\alpha r\cos \theta K_{{n - \tfrac{3}{2}}} (\alpha r)G_{n} \left( {\cos \theta } \right) + (n + 1)\,K_{{n - \tfrac{1}{2}}} (\alpha r)G_{n + 1} \left( {\cos \theta } \right)} \right)\csc \theta , $$
(57)
$$ A_{2n} (r,\theta ) = - r^{ - n - 1} P_{n} (\cos \theta ), $$
(58)
$$ B_{2n} (r,\theta ) = r^{{ - \tfrac{3}{2}}} \left[ {\alpha rK_{{n - \tfrac{3}{2}}} (\alpha r)G_{n} (\cos \theta )} \right.\left. { - K_{{n - \tfrac{1}{2}}} P_{n} (\cos \theta )} \right], $$
(59)

where \( P_{n} (.) \) is the Legendre Polynomial of order n.

The functions in Eqs. (68) and (69) are defined as

$$ e_{1n} (\tau , - \sigma ) = - \int\limits_{0}^{\infty } t A_{1n} (t, - \sigma )J_{1} (t\tau )\,{\text{d}}t, $$
(60)
$$ f_{1n} (\tau , - \sigma ) = - \int\limits_{0}^{\infty } t B_{1n} (t, - \sigma )J_{1} (t\tau )\,{\text{d}}t, $$
(61)
$$ e_{2n} (\tau , - \sigma ) = - \int\limits_{0}^{\infty } t A_{2n} (t, - \sigma )J_{0} (t\tau )\,dt, $$
(62)
$$ f_{2n} (\tau , - \sigma ) = - \int\limits_{0}^{\infty } t \,B_{2n} (t, - \sigma )J_{0} (t\tau )\,{\text{d}}t. $$
(63)

The integrals required in (60)–(63) are performed analytically as follows: Using the polynomial representations of the Gegenbauer and Legendre functions together with the result given by Erdelyi et al. [32]:

$$ \begin{aligned} \int\limits_{0}^{\infty } {\frac{{x^{{\nu + \tfrac{1}{2}}} }}{{(x^{2} + a^{2} )^{\mu + 1} }}\,J_{\nu } (xy)(xy)^{{\tfrac{1}{2}}} \,{\text{d}}x} & = \frac{{a^{\nu - \mu } y^{{\mu + \tfrac{1}{2}}} }}{{2^{\mu } \varGamma (\mu + 1)}}K_{\nu - \mu } (ay), \\ & \quad \text{Re} \,a > 0,\,y > 0,\quad - 1 < \text{Re} \nu < 2\text{Re} \mu + 1, \\ \end{aligned} $$
$$ \begin{aligned} & \int\limits_{0}^{\infty } {\frac{{x^{{\nu + \tfrac{1}{2}}} K_{\mu } (a(x^{2} + y^{2} )^{{\tfrac{1}{2}}} )}}{{(x^{2} + \beta^{2} )^{{\tfrac{\mu }{2}}} }}J_{\nu } (xy)(xy)^{{\tfrac{1}{2}}} {\text{d}}x} \\ & \quad = \frac{{\beta^{\nu + 1 - \mu } y^{{\nu + \tfrac{1}{2}}} }}{{a^{\mu } }}(y^{2} + a^{2} )^{{\tfrac{\mu - \nu - 1}{2}}} K_{\mu - \nu - 1} (\beta (y^{2} + a^{2} )^{{\tfrac{1}{2}}} ),\quad \text{Re} \,a > 0,\,\,\text{Re} \beta > 0, \\ \end{aligned} $$

where \( K_{\nu } \) is the modified Bessel function of the second kind, one can show by induction that

$$ e_{1n} (\tau , - \sigma ) = ( - 1)^{n - 1} \frac{{\tau^{n - 1} }}{n!}e^{ - \sigma \tau } , $$
(64)
$$ f_{1n} (\tau , - \sigma ) = ( - 1)^{n} \frac{{\tau^{n - 1} }}{n!}e^{ - \sigma \tau } , $$
(65)
$$ e_{2n} (\tau , - \sigma ) = ( - 1)^{n} \sqrt {\frac{\pi \alpha }{{2\tau^{2} }}} \,\,e^{ - \sigma \,\xi } G_{n} \left( {\frac{\xi }{\alpha }} \right), $$
(66)
$$ f_{2n} (\tau , - \sigma ) = ( - 1)^{n - 1} \sqrt {\frac{\pi \alpha }{{2\xi^{2} }}} \,\,e^{ - \sigma \,\xi } G_{n} \left( {\frac{\xi }{\alpha }} \right). $$
(67)

The functions in Eqs. (20) and (21) are defined as

$$ \left[ \begin{aligned} a_{1n} (r,\theta ) \hfill \\ b_{1n} (r,\theta ) \hfill \\ \end{aligned} \right] = \int\limits_{0}^{\infty } {\tau \left\{ {H_{1} \left[ \begin{aligned} e_{1n} (\tau , - \sigma ) \hfill \\ f_{1n} (\tau , - \sigma ) \hfill \\ \end{aligned} \right] + H_{2} \left[ \begin{aligned} e_{2n} (\tau , - \sigma ) \hfill \\ f_{2n} (\tau , - \sigma ) \hfill \\ \end{aligned} \right]} \right\}\,\,J_{1} (\tau r\sin \theta ){\text{d}}\tau } , $$
(68)
$$ \left[ \begin{aligned} a_{2n} (r,\theta ) \hfill \\ b_{2n} (r,\theta ) \hfill \\ \end{aligned} \right] = \int\limits_{0}^{\infty } {\tau \left\{ {\,\,H_{3} \left[ \begin{aligned} e_{1n} (\tau , - \sigma ) \hfill \\ f_{1n} (\tau , - \sigma ) \hfill \\ \end{aligned} \right] + H_{4} \left[ \begin{aligned} e_{2n} (\tau , - \sigma ) \hfill \\ f_{2n} (\tau , - \sigma ) \hfill \\ \end{aligned} \right]} \right\}J_{0} (\tau r\sin \theta )\,\,{\text{d}}\tau } , $$
(69)

where

$$ H_{1} = \left( {\tau - \xi } \right)^{ - 1} \left( {\tau e^{{ - \tau \tilde{z}}} - \xi e^{{ - \xi \tilde{z}}} } \right), $$
(70)
$$ H_{2} = \xi \left( {\tau - \xi } \right)^{ - 1} \left( {e^{{ - \xi \tilde{z}}} - e^{{ - \tau \tilde{z}}} } \right), $$
(71)
$$ H_{3} = \tau \left( {\tau - \xi } \right)^{ - 1} \left( {e^{{ - \tau \tilde{z}}} - \,e^{{ - \xi \tilde{z}}} } \right), $$
(72)
$$ H_{4} = \left( {\tau - \xi } \right)^{ - 1} \left( {\tau e^{{ - \xi \tilde{z}}} - \xi e^{{ - \tau \tilde{z}}} } \right). $$
(73)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherief, H.H., Faltas, M.S. & El-Sapa, S. Force on a spherical particle oscillating in a viscous fluid perpendicular to an impermeable planar wall. J Braz. Soc. Mech. Sci. Eng. 41, 244 (2019). https://doi.org/10.1007/s40430-019-1750-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1750-7

Keywords

Navigation