Skip to main content
Log in

Comprehensive modelling, analysis and optimization of furan resin-based moulding sand system with sawdust as an additive

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Scarcity of high-cost silica sand, casting defect such as hot tear in hard moulds and casting ejection problem after solidification are the key industrial problems. Sawdust is a by-product of wood working industries, and economic disposal of sawdust in these industries is a growing concern to the wood industries. The present work utilized sawdust as an additive in preparing mould cavity for casting applications. Sand mould properties such as compression strength (CS), mould hardness (MH), gas evolution (GE), permeability (P) and collapsibility (CP) will have good impact on the quality of castings. The effect of variables, namely quantity of resin, hardener, sawdust and setting time, on no-bake furan-bonded sand system is studied in the present research work. The experiments are conducted as per design of experiments, and the data are used to investigate the effect of individual and combined parametric contributions towards responses and establish nonlinear input–output relationships. All nonlinear regression models (that is, input–output relationships) are found to be statistically adequate. The input–output relations are analysed and presented for each of the response with the help of surface plots. Further, the models are found to predict the output close to the experiment (target value). The grand average value in predicting responses is found to be equal to 5.03%. The multi-objective optimization of responses with conflicting nature (minimize: GE and CP; maximize: CS, P and MH) is carried out with the help of global fitness function values determined using genetic algorithm, particle swarm optimization, teacher–learner-based optimization and JAYA algorithms. The optimized values of process parameters that resulted in best set of responses are found to be equal to 60 min, 2.01%, 0.6% and 0.93% for setting time, quantity of resin, hardener and sawdust, respectively. Two automobile coupling parts are cast by pouring molten aluminium into the mould cavity with the optimized and non-optimum sand mould conditions. Further, these two cast components are tested for their quality characteristics, such as surface finish, yield strength, hardness, density and secondary dendrite arm spacing. It has been observed that the quality characteristics of castings produced in mould with optimized parameters are found to be much better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alonso-Santurde R, Coz A, Quijorna N, Viguri JR, Andres A (2010) Valorization of foundry sand in clay bricks at industrial scale. J Ind Ecol 14(2):217–230. https://doi.org/10.1111/j.1530-9290.2010.00233.x

    Article  Google Scholar 

  2. Bobrowski A, Grabowska B (2012) The impact of temperature on furan resin and binder structure. Metall Foundry Eng 38(1):73–80. https://doi.org/10.7494/mafe.2012.38.1.73

    Article  Google Scholar 

  3. Ji S, Wan L, Fan Z (2001) The toxic compounds and leaching characteristics of spent foundry sands. Water Air Soil Pollut 132:347–364. https://doi.org/10.1023/A:1013207000046

    Article  Google Scholar 

  4. Chojecki A, Mocek J (2011) Gas pressure in sand mould poured with cast iron. Arch Foundry Eng 11(1):9–14

    Google Scholar 

  5. Holtzer M, Danko R, Kmita A (2016) Influence of a reclaimed sand addition to moulding sand with furan resin on its impact on the environment. Water Air Soil Pollut 227(1):16. https://doi.org/10.1007/s11270-015-2707-9

    Article  Google Scholar 

  6. Mizuki T, Kanno T (2018) Establishment of casting manufacturing technology by introducing an artificial sand mold with furan resin and realizing a clean foundry. Int J Metalcast 12(4):772–778. https://doi.org/10.1007/s40962-018-0209-4

    Article  Google Scholar 

  7. Major-Gabrys K, StM Dobosz, Jakubski J (2011) The estimation of harmfulness for environment of moulding sand with biopolymer binder based on polylactide. Arch Foundry Eng 11:69–72

    Google Scholar 

  8. Major-Gabrys K, StM Dobosz, Danko R et al (2011) The estimation of ability to reclaim of moduling sands with biopolymer binders. Arch Foundry Eng 11:79–84

    Google Scholar 

  9. Mocek J, Samsonowicz J (2011) Changes of gas pressure in sand mould during cast iron pouring. Arch Foundry Eng 11:87–92

    Google Scholar 

  10. Izdebska-Szanda I, Szanda M, Matuszewski S (2011) Technological and ecological studies of moulding sands with new inorganic binders for casting of non-ferrous metal alloys. Arch Foundry Eng 11:43–48

    Google Scholar 

  11. Wang JN, Fan ZT, Wang HF, Dong XP, Huang NY (2007) An improved sodium silicate binder modified by ultra-fine powder materials. China Foundry 4(1):26–30

    Google Scholar 

  12. Roy T (2013) Analysis of casting defects in foundry by computerised simulations (CAE)-A new approach along with some industrial case studies. In: Transactions of 61st Indian Foundry Congress –9

  13. Nwajagu CO, Okafor ICI (1989) A study of the moulding properties of sand bonded by ukpor clay. Appl Clay Sci 4:211–223. https://doi.org/10.1016/0169-1317(89)90030-6

    Article  Google Scholar 

  14. Reddy NS, Yong-Hyun B, Seong-Gyeong K, Young HB (2014) Estimation of permeability of green sand mould by performing sensitivity analysis on neural networks model. J Korea Foundry Soc 34(3):107–111. https://doi.org/10.7777/jkfs.2014.34.3.107

    Article  Google Scholar 

  15. Chate GR, Patel GCM, Deshpande AS, Parappagoudar MB (2018) Modeling and optimization of furan molding sand system using design of experiments and particle swarm optimization. Proc Inst Mech Eng Part E J Process Mech Eng 232(5):579–598. https://doi.org/10.1177/0954408917728636

    Article  Google Scholar 

  16. Khandelwal H, Ravi B (2015) Effect of binder composition on the shrinkage of chemically bonded sand cores. Mater Manuf Processes 30(12):1465–1470. https://doi.org/10.1080/10426914.2014.994779

    Article  Google Scholar 

  17. Parappagoudar MB, PratiharDK Datta GL (2007) Linear and non-linear statistical modelling of green sand mould system. Int J Cast Met Res 20(1):1–13. https://doi.org/10.1179/136404607X184952

    Article  Google Scholar 

  18. Surekha B, Hanumantha Rao D, Krishna G, Rao M, Vundavilli PR, Parappagoudar MB (2012) Modeling and analysis of resin bonded sand mould system using design of experiments and central composite design. J Manuf Sci Prod 12:31–50. https://doi.org/10.1515/jmsp-2012-0003

    Article  Google Scholar 

  19. Habib SS (2009) Study of the parameters in electrical discharge machining through response surface methodology approach. Appl Math Model 33(12):4397–4407. https://doi.org/10.1016/j.apm.2009.03.021

    Article  MATH  Google Scholar 

  20. Patel GCM, Krishna P, Parappagoudar MB (2016) Squeeze casting process modeling by a conventional statistical regression analysis approach. Appl Math Model 40(15–16):6869–6888. https://doi.org/10.1016/j.apm.2016.02.029

    Article  Google Scholar 

  21. Pearl J (1984) Heuristics: intelligent search strategies for computer problem solving. Addison-Wesley, Boston

    Google Scholar 

  22. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison Wesley, Reading

    MATH  Google Scholar 

  23. AlRashidi MR, El-Hawary ME (2009) Applications of computational intelligence techniques for solving the revived optimal power flow problem. Electr Power Syst Res 79(4):694–702. https://doi.org/10.1016/j.epsr.2008.10.004

    Article  Google Scholar 

  24. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214:108–132. https://doi.org/10.1016/j.amc.2009.03.090

    Article  MathSciNet  MATH  Google Scholar 

  25. Holland HJ (1975) Adaptation in natural artificial systems: an introductory analysis with application to biology, control, and artificial intelligence. The University of Michigan Press, Ann Arbor

    MATH  Google Scholar 

  26. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  27. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  28. Sierra MR, Coello CC (2005) Improving PSO-based multi-objective optimization using crowding, mutation and e-dominance. Evolut Multi-criterion Optim 3410:505–520. https://doi.org/10.1007/978-3-540-31880-4_35

    Article  MATH  Google Scholar 

  29. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-tr06. Erciyes University, Engineering Faculty, Computer Engineering Department, Vol. 200

  30. Jain NK, Jain VK, Deb K (2007) Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms. Int J Mach Tool Manuf 47(6):900–919. https://doi.org/10.1016/j.ijmachtools.2006.08.001

    Article  Google Scholar 

  31. Surekha B, Kaushik LK, Panduy AK, Vundavilli PR, Parappagoudar MB (2012) Multi-objective optimization of green sand mould system using evolutionary algorithms. Int J Adv Manuf Tech 58:9–17. https://doi.org/10.1007/s00170-011-3365-8

    Article  Google Scholar 

  32. Patel GCM, Krishna P, Vundavilli PR, Parappagoudar MB (2016) Multi-objective optimization of squeeze casting process using evolutionary algorithms. Int J Swarm Intell Res 7(1):57–76. https://doi.org/10.4018/IJSIR.2016010103

    Article  Google Scholar 

  33. Samanta S, Chakraborty S (2011) Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm. Eng Appl Artif Intell 24:946–957. https://doi.org/10.1016/j.engappai.2011.03.009

    Article  Google Scholar 

  34. Yildiz AR (2012) A comparative study of population-based optimization algorithms for turning operations. Inf Sci 210:81–88. https://doi.org/10.1016/j.ins.2012.03.005

    Article  Google Scholar 

  35. Vundavilli PR, Kumar JP, Parappagoudar MB (2013) Weighted average-based multi-objective optimization of tube spinning process using non-traditional optimization techniques. Int J Swarm Intell Res 4(3):42–57. https://doi.org/10.4018/ijsir.2013070103

    Article  Google Scholar 

  36. Venkata Rao R, Kalyankar VD, Waghmare G (2013) Parameters optimization of selected casting processes using teaching–learning-based optimization algorithm. Appl Math Model 38(23):5592–5608. https://doi.org/10.1016/j.apm.2014.04.036

    Article  MATH  Google Scholar 

  37. Venkata Rao R, Kalyankar VD (2013) Parameter optimization of modern machining processes using teaching–learning-based optimization algorithm. Eng Appl Artif Intell 26:524–531. https://doi.org/10.1016/j.engappai.2012.06.007

    Article  Google Scholar 

  38. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  39. Rao RV, Patel V (2013) Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm. Appl Math Model 37(3):1147–1162. https://doi.org/10.1016/j.apm.2012.03.043

    Article  MathSciNet  MATH  Google Scholar 

  40. Rao RV, Rai DP, Balic J (2016) Surface grinding process optimization using Jaya algorithm. In: Kruse R (ed) Computational intelligence in data mining, vol 2. Springer, New Delhi, pp 487–495. https://doi.org/10.1007/978-81-322-2731-1_46

    Chapter  Google Scholar 

  41. Rao RV (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7(1):19–34. https://doi.org/10.5267/j.ijiec.2015.8.004

    Article  Google Scholar 

  42. Rao RV (2019) Single-and multi-objective optimization of casting processes using Jaya algorithm and its variants. In: Venkata Rao R (ed) Jaya: an advanced optimization algorithm and its engineering applications. Springer, Cham, pp 273–289. https://doi.org/10.1007/978-3-319-78922-4_9

    Chapter  Google Scholar 

  43. Rao RV (2019) Jaya optimization algorithm and its variants. In: Venkata Rao R (ed) Jaya: an advanced optimization algorithm and its engineering applications. Springer, Cham, pp 9–58. https://doi.org/10.1007/978-3-319-78922-4_2

    Chapter  Google Scholar 

  44. Mahapatra SS, Patnaik A (2007) Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. Int J Adv Manuf Tech 34(9–10):911–925. https://doi.org/10.1007/s00170-006-0672-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Ravi Sangolli, VRJ Traders, Belagaum, Mr. Sadanand Humbarwadi, Director of Foundry Cluster, Belgaum, Abhishek Alloys Pvt. Ltd, and AKP Foundry, Belagaum, India, for their constant support in successful conduction of research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh B. Parappagoudar.

Additional information

Technical Editor: Márcio Bacci da Silva, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Experimental matrices of nonlinear model on central composite design for different responses (sand mould properties)

Exp. no

Input variables (coded)

Sand mould properties

X 1

X 2

X 3

X 4

Compression strength (KPa)

Permeability

Mould hardness

Gas evolution (ml/gm)

Collapsibility (KPa)

1

− 1

− 1

− 1

− 1

     

2

1

− 1

− 1

− 1

     

3

− 1

1

− 1

− 1

     

4

1

1

− 1

− 1

     

5

− 1

− 1

1

− 1

     

6

1

− 1

1

− 1

     

7

− 1

1

1

− 1

     

8

1

1

1

− 1

     

9

− 1

− 1

− 1

1

     

10

1

− 1

− 1

1

     

11

− 1

1

− 1

1

     

12

1

1

− 1

1

     

13

− 1

− 1

1

1

     

14

1

− 1

1

1

     

15

− 1

1

1

1

     

16

1

1

1

1

     

17

− 1

0

0

0

     

18

1

0

0

0

     

19

0

− 1

0

0

     

20

0

1

0

0

     

21

0

0

− 1

0

     

22

0

0

1

0

     

23

0

0

0

− 1

     

24

0

0

0

1

     

25

0

0

0

0

     

26

0

0

0

0

     

27

0

0

0

0

     

Appendix 2: Input–output data of test cases

Test no.

Input variables

Experimental output values

A

B

C

D

Compression strength (KPa)

Permeability

Mould hardness

Collapsibility (KPa)

Gas evolution (ml/gm)

1

2.15

0.5

100

1.40

190

118

74.1

148

10.1

2

2.05

0.4

119

1.90

175

120

71.4

132

9.9

3

2.15

0.45

115

1.30

246

110

75.3

194

9.4

4

2.00

0.55

067

1.50

204

123

68.6

138

8.8

5

2.15

0.40

103

0.55

185

096

75.2

142

9.1

6

1.95

0.50

073

0.95

158

113

70.4

120

8.2

7

1.85

0.55

109

0.55

248

117

77.7

184

10.4

8

1.95

0.45

068

1.65

120

106

61.4

088

10.8

9

1.80

0.50

079

0.85

178

103

68.9

126

10.6

10

2.10

0.40

113

1.70

184

124

76.2

134

9.6

11

2.05

0.60

118

1.15

320

126

75.4

240

8.1

12

1.85

0.55

089

0.65

194

114

75.8

155

9.4

13

1.80

0.45

088

1.75

87

98

64.5

078

12.5

14

1.90

0.55

062

0.50

232

107

70.4

153

7.2

15

2.00

0.60

091

1.75

199

128

77.2

134

11.3

16

1.95

0.55

077

0.75

187

105

70.4

138

9.1

17

2.00

0.50

088

0.60

156

093

74.8

124

9.4

18

1.95

0.50

118

1.45

232

119

70.0

182

8.2

19

2.20

0.40

087

0.90

128

103

75.8

103

10.8

20

1.80

0.60

114

0.75

298

129

77.7

232

9.7

Appendix 3: Summary of test case results for the responses—CS, P, MH and CP

Test no.

Compression strength (KPa)

Permeability

Experimental value

CCD prediction

Deviation (%)

Absolute deviation (%)

Experimental Value

CCD prediction

Deviation (%)

Absolute deviation (%)

1

190

200.04

− 5.29

5.29

118

113.11

4.15

4.15

2

175

157.88

9.78

9.78

120

112.79

6.01

6.01

3

246

233.86

4.94

4.94

110

113.40

− 3.09

3.09

4

204

199.06

2.42

2.42

123

118.91

3.32

3.32

5

185

167.93

9.23

9.23

96

102.01

− 6.26

6.26

6

158

166.05

− 5.09

5.09

113

108.43

4.05

4.05

7

248

227.06

8.44

8.44

117

109.26

6.61

6.61

8

120

134.17

− 11.81

11.81

106

110.64

− 4.38

4.38

9

178

160.15

10.03

10.03

103

107.18

− 4.06

4.06

10

184

162.74

11.56

11.56

124

116.54

6.01

6.01

11

320

310.41

3.00

3.00

126

119.96

4.80

4.80

12

194

188.45

2.86

2.86

114

109.48

3.97

3.97

13

87

95.36

− 9.61

9.61

98

102.81

− 4.91

4.91

14

232

216.67

6.61

6.61

107

104.10

2.71

2.71

15

199

188.37

5.34

5.34

128

122.57

4.24

4.24

16

187

192.85

− 3.13

3.13

105

109.32

− 4.12

4.12

17

156

163.63

− 4.89

4.89

93

100.92

− 8.52

8.52

18

232

211.40

8.88

8.88

119

111.90

5.96

5.96

19

128

145.75

− 13.87

13.87

103

109.91

− 6.71

6.71

20

298

271.69

8.83

8.83

129

121.91

5.50

5.50

 

Mould hardness

Collapsibility (KPa)

1

74.1

73.21

1.20

1.20

148

153.73

− 3.87

3.87

2

71.4

71.85

− 0.63

0.63

132

119.07

9.79

9.79

3

75.3

73.25

2.72

2.72

194

180.22

7.10

7.10

4

68.6

68.03

0.83

0.83

138

132.37

4.08

4.08

5

75.2

76.99

− 2.38

2.38

142

136.82

3.65

3.65

6

70.4

69.01

1.97

1.97

120

124.88

− 4.07

4.07

7

77.7

75.58

2.73

2.73

184

186.98

− 1.62

1.62

8

61.4

63.81

− 3.93

3.93

88

92.84

− 5.50

5.50

9

68.9

70.79

− 2.74

2.74

126

128.04

− 1.62

1.62

10

76.2

73.27

3.85

3.85

134

122.23

8.78

8.78

11

75.4

74.29

1.47

1.47

240

229.28

4.47

4.47

12

75.8

74.69

1.46

1.46

155

149.69

3.42

3.42

13

64.5

66.3

− 2.79

2.79

78

76.83

1.50

1.50

14

70.4

70.61

− 0.30

0.30

153

156.56

− 2.32

2.32

15

77.2

74.43

3.59

3.59

134

127.01

5.21

5.21

16

70.4

72.4

− 2.84

2.84

138

143.72

− 4.15

4.15

17

74.8

73.28

2.03

2.03

124

135.03

− 8.89

8.89

18

70

70.13

− 0.19

0.19

182

167.21

8.13

8.13

19

75.8

74.91

1.17

1.17

103

113.08

− 9.79

9.79

20

77.7

76.49

1.56

1.56

232

210.21

9.39

9.39

Appendix 4: Summary of the test case results for the response—GE

Exp. no.

Experimental GE (ml/gm)

CCD prediction

Deviation (%)

Absolute deviation (%)

1

10.1

10.56

− 4.56

4.56

2

9.9

9.67

2.34

2.34

3

9.4

8.67

7.72

7.72

4

8.8

8.39

4.66

4.66

5

9.1

9.97

− 9.54

9.54

6

8.2

9.06

− 10.49

10.49

7

10.4

9.95

4.33

4.33

8

10.8

10.90

− 0.92

0.92

9

10.6

11.17

− 5.35

5.35

10

9.6

9.75

− 1.60

1.60

11

8.1

7.67

5.31

5.31

12

9.4

10.24

− 8.91

8.91

13

12.5

13.98

− 11.86

11.86

14

7.2

7.59

− 5.40

5.40

15

11.3

10.41

7.90

7.90

16

9.1

8.68

4.64

4.64

17

9.4

9.92

− 5.52

5.52

18

8.2

8.48

− 3.38

3.38

19

10.8

11.01

− 1.94

1.94

20

9.7

9.34

3.71

3.71

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chate, G.R., Patel, G.C.M., Bhushan, S.N.B. et al. Comprehensive modelling, analysis and optimization of furan resin-based moulding sand system with sawdust as an additive. J Braz. Soc. Mech. Sci. Eng. 41, 183 (2019). https://doi.org/10.1007/s40430-019-1684-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1684-0

Keywords

Navigation