Skip to main content
Log in

Impact of enhancing diffusion on Carreau–Yasuda fluid flow over a rotating disk with slip conditions

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The present study is devoted to acquire non-similar solutions for the behavior of slip conditions on the steady MHD Carreau–Yasuda fluid flow over a rotating disk. In order to examine the heat transfer phenomena, superior form of Fourier’s law is used and the conductivity of the fluid is assumed to be changeable. The nonlinear partial differential equations leading the flow and thermal field are written in the non-dimensional ordinary differential form by using suitable transformations. The non-dimensional set of coupled ordinary differential equations is solved using the RK method. The impact of various non-dimensional physical parameters on velocity and temperature fields is explored. The numerical results of resistant force in terms of the skin friction coefficient are revealed graphically for various physical parameters involved in the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(C_{f} ,C_{g}\) :

Skin friction coefficient

We :

Weissenberg number

d :

Fluid parameter

n :

Power law index

\(\varGamma^{d}\) :

Time constant

f(η):

Dimensionless stream function

κ :

Thermal conductivity (Wm−1K−1)

\(\tau\) :

Extra tensor

\(\mu_{0}\) :

Zero shear rate viscosity

\(\mu_{\infty }\) :

Infinite shear rate viscosity

\(k_{f}\) :

Generally supposed to be constant

Pr :

Prandtl number

ρ :

Fluid pressure

(ρC)f :

Heat capacity of the fluid (Jm−3K−1)

(ρC)p :

Effective heat capacity of the nanoparticle material (Jm−3K−1)

q w :

Wall heat flux

Re x :

Local Reynolds number

α :

Temperature base thermal diffusivity (m2s−1)

η :

Similarity variable

θ :

Dimensionless temperature

υ :

Kinematic viscosity of the fluid

ρ f :

Fluid density (kgm−1)

ρ p :

Nanoparticle mass density (kgm−1)

σ :

Electrical conductivity of the fluid

λ :

Velocity slip parameter

Ha :

Hartmann number

\(\delta_{t}\) :

Thermal relaxation parameter

ψ :

Stream function (m2s−1)

:

Condition at the free stream

w :

Condition of the surface

\(\lambda_{1}\) :

Tangential slip parameter

T :

Fluid temperature (K)

T w :

Temperature at the stretching sheet (K)

T :

Ambient temperature (K)

References

  1. Pal D, Mondal H (2011) Effects of Soret Dufour, chemical reaction and thermal radiation on MHD non-Darcy unsteady mixed convective heat and mass transfer over a stretching sheet. Commun Nonlinear Sci Numer Simul 16:1942–1958

    Article  Google Scholar 

  2. Ahmed S, Beg OA, Ghosh SK (2014) A couple stress fluid modeling on free convection oscillatory hydromagnetic flow in an inclined rotating channel. Ain Shams Eng J 5:1249–1265

    Article  Google Scholar 

  3. Salahuddin T, Malik MY, Hussain A, Bilal S, Awais M (2016) MHD flow of Cattanneo–Christov heat flux model for Williamson fluid over a stretching sheet with variable thickness: using numerical approach. J Magn Magn Mater 401:991–997

    Article  Google Scholar 

  4. Bhukta D, Dash GC, Mishra SR, Baag S (2017) Dissipation effect on MHD mixed convection flow over a stretching sheet through porous medium with non-uniform heat source/sink. Ain Shams Eng J 8:353–361

    Article  Google Scholar 

  5. Thumma T, Bég OA, Kadir A (2017) Numerical study of heat source/sink effects on dissipative magnetic nanofluid flow from a non-linear inclined stretching/shrinking sheet. J Mol Liq 232:159–173

    Article  Google Scholar 

  6. Khan M, Hussain A, Malik MY, Salahuddin T, Khan F (2017) Boundary layer flow of MHD tangent hyperbolic nanofluid over a stretching sheet: a numerical investigation. Results Phys 7:2837–2844

    Article  Google Scholar 

  7. Hussain A, Malik MY, Salahuddin T, Bilal S, Awais M (2017) Combined effects of viscous dissipation and Joule heating on MHD Sisko nanofluid over a stretching cylinder. J Mol Liq 231:341–352

    Article  Google Scholar 

  8. Ghosh SK (2017) Unsteady magnetized flow and heat transfer of a viscoelastic fluid over a stretching surface. J Magn Magn Mater 443:309–318

    Article  Google Scholar 

  9. Waqas M, Hayat T, Shehzad SA, Alsaedi A (2018) Transport of magnetohydrodynamic nanomaterial in a stratified medium considering gyrotactic microorganisms. Phys B Phys Condens Matter 529:33–40

    Article  Google Scholar 

  10. Khan M, Shahid A, Malik MY, Salahuddin T (2018) Thermal and concentration diffusion in Jeffery nanofluid flow over an inclined stretching sheet: a generalized Fourier’s and Fick’s perspective. J Mol Liq 25:7–14

    Article  Google Scholar 

  11. Nguyen TD, Harmand S (2013) Heat transfer and vortical structures around a rotating cylinder with a spanwise disk and low-velocity crossflow. Int J Heat Mass Transf 64:1014–1030

    Article  Google Scholar 

  12. Ming C, Zheng L, Zhang X, Liu F, Anh V (2016) Flow and heat transfer of power-law fluid over a rotating disk with generalized diffusion. Int Commun Heat Mass Transfer 79:81–88

    Article  Google Scholar 

  13. Dai T, Dai HL (2016) Thermo-elastic analysis of a functionally graded rotating hollow circular disk with variable thickness and angular speed. Appl Math Model 40:7689–7707

    Article  MathSciNet  Google Scholar 

  14. Remigius WD, Sarkar S, Gupta S (2017) Bifurcation and response analysis of a nonlinear flexible rotating disc immersed in bounded compressible fluid. J Sound Vib 392:260–279

    Article  Google Scholar 

  15. Yina C, Zhenga L, Zhanga C, Zhang X (2017) Flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate in the radial direction. Propuls Power Res 6(1):25–30

    Article  Google Scholar 

  16. Doha DH, Muthtamilselvan M (2017) Thermophoretic particle deposition on magnetohydrodynamic flow of micropolar fluid due to a rotating disk. Int J Mech Sci 130:350–359

    Article  Google Scholar 

  17. Yaoa B, Lian L (2018) A new analysis of the rotationally symmetric flow in the presence of an infinite rotating disk. Int J Mech Sci 136:106–111

    Article  Google Scholar 

  18. Carreau PJ (1972) Rheological equations from molecular network theories. J Rheol 19:19

    Google Scholar 

  19. Srinivas S, Muthuraj R (2010) MHD flow with slip effects and temperature-dependent heat source in a vertical wavy porous space. Chem Eng Commun 197:1387–1403

    Article  Google Scholar 

  20. Srinivas S, Muthuraj R (2010) Peristaltic transport of a Jeffery fluid under the effect of slip in an inclined asymmetric channel. Int J Appl Mech 2:437–455

    Article  Google Scholar 

  21. Muthuraj R, Srinivas S (2013) Combined effects of chemical reaction and wall slip on MHD flow in a vertical wavy space traveling thermal wave. Walailak J Sci Technol 10(4):369–383

    Google Scholar 

  22. Muthuraj R, Srinivas S (2019) Influence of magnetic field and wall slip conditions on steady flow between parallel flat wall and a long wavy wall with Soret effect. J Naval Archit Mar Eng 6:2

    Google Scholar 

  23. Thumma T, Mishra SR (2018) Effect of viscous dissipation and joule heating on MHD Jeffery nanofluid flow with and without multi slip boundary conditions. J Nanofluids 7(3):516–526

    Article  Google Scholar 

  24. Dharmaiaha G, Vedavathi N, Rani CHB, Balamurugan KS (2018) Buoyancy ratio and heat source effects on MHD flow over an inclined non-linearly stretching sheet. Front Heat Mass Transf 10(5). http://dx.doi.org/10.5098/hmt.10.5

  25. Sheri SD, Thumma T (2016) Double diffusive magnetohydrodynamic free convective flow of nanofluids past an inclined porous plate employing Tiwari and Das model: FEM. J Nanofluids 5(6):802–816

    Article  Google Scholar 

  26. Thumma T, Chamkha A, Sheri SR (2017) MHD natural convective flow of nanofluids past stationary and moving inclined porous plate considering temperature and concentration gradients with suction. Int J Numer Method Heat Fluid Flow 27(8):1765–1794. https://doi.org/10.1108/HFF-03-2016-0090

    Article  Google Scholar 

  27. Yasuda K (1979) Investigation of the analogies between viscometric and linear viscoelastic properties of polystyrene fluids. Ph.D., Massachusetts Institute of Technology, Department of Chemical Engineering, Boston

  28. Peralta M, Meza BE, Zorrilla SE (2017) Analytical solutions for the free-draining flow of a Carreau–Yasuda fluid on a vertical plate. Chem Eng Sci 168:391–402

    Article  Google Scholar 

  29. Salahuddin T, Malik MY, Hussain A, Bilal S, Awais M, Khan I (2017) MHD squeezed flow of Carreau–Yasuda fluid over a sensor surface. Alex Eng J 56:27–34

    Article  Google Scholar 

  30. Abbasi FM, Saba, Shehzad SA (2017) Heat transfer analysis for peristaltic flow of Carreau–Yasuda fluid through a curved channel with radial magnetic field. Int J Heat Mass Transf 115:777–783

    Article  Google Scholar 

  31. Lin HT, Lin LK (1987) Heat transfer from a rotating cone or disk to fluids of any Prandtl number. Int Commun Heat Mass Transf 14:323–332

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Salahuddin.

Additional information

Technical Editor: Cezar Negrao, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Salahuddin, T. & Malik, M.Y. Impact of enhancing diffusion on Carreau–Yasuda fluid flow over a rotating disk with slip conditions. J Braz. Soc. Mech. Sci. Eng. 41, 78 (2019). https://doi.org/10.1007/s40430-018-1492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1492-y

Keywords

Navigation