Skip to main content
Log in

An optimal solution of Cattaneo–Christov heat flux model and chemical processes for 3D flow of Eyring–Powell fluid

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper investigates heat and mass transfer features of Eyring–Powell fluid past a stretching sheet with heterogeneous–homogenous processes. Moreover, investigation of heat conduction is carried out using Cattaneo–Christov heat flux model. With the help of appropriate transformations, the governing partial differential equations are transformed into a set of coupled nonlinear ordinary differential equations. Analytical results are obtained by using the optimal homotopy analysis method. Effects of pertinent physical parameters on thermal and concentration profiles are deliberated through graphical illustrations. We found that temperature profile declines with incrementing the estimations of thermal relaxation parameter. Furthermore, the concentration increases with the augmented estimations of Lewis number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Fourier JBJ (1822) Théorie Analytique De La Chaleur. Didot, Paris

    MATH  Google Scholar 

  2. Cattaneo C (1948) Sulla conduzione del calore. Atti Semin Mat Fis Univ Modena Reggio Emilia 3:83–101

    MathSciNet  MATH  Google Scholar 

  3. Christov CI (2009) On frame in different formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech Res Commun 36:481–486

    Article  Google Scholar 

  4. Tibullo V, Zampoli V (2011) A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids. Mech Res Commun 38:77–79

    Article  Google Scholar 

  5. Straughan B (2010) Thermal convection with the Cattaneo–Christov model. Int J Heat Mass Transf 53:95–98

    Article  Google Scholar 

  6. Straughan B (2010) Acoustic waves in a Cattaneo–Christov gas. Phys Lett A 374:2667–2669

    Article  MathSciNet  Google Scholar 

  7. Straughan B (2013) Gene-culture shock waves. Phys Lett A 377:2531–2534

    Article  MathSciNet  Google Scholar 

  8. Han S, Zheng L, Li C, Zhang X (2014) Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model. Appl Math Lett 38:87–93

    Article  MathSciNet  Google Scholar 

  9. Chaudhary MA, Merkin JH (1995) A simple isothermal model for homogeneous heterogeneous reactions in boundary layer flow: I. Equal diffusivities. Fluid Dyn Res 16:311–333

    Article  MathSciNet  Google Scholar 

  10. Bachok N, Ishak A, Pop I (2011) On the stagnation point flow towards a stretching sheet with homogeneous–heterogeneous reactions effects. Commun Nonlinear Sci Numer Simul 16:4296–4302

    Article  Google Scholar 

  11. Khan WA, Pop I (2012) Effects of homogeneous–heterogeneous reactions on the viscoelastic fluid towards a stretching sheet. ASME J Heat Transf 134(064506):1–5

    Google Scholar 

  12. Nadeem S, Ali M (2009) Analytical solutions for pipe flow of a fourth grade fluid with Reynolds and vogel’s models of viscosities. Commun Nonlinear Sci Numer Simul 14:2073–2090

    Article  MathSciNet  Google Scholar 

  13. Hsiao KL (2016) Numerical solution for Ohmic Soret-Dufour heat and mass mixed convection of viscoelastic fluid over a stretching sheet with multimedia physical features. J Aerosp Eng. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000681

    Article  Google Scholar 

  14. Hameed M, Nadeem S (2007) Unsteady MHD flow of a non-Newtonian fluid on a porous plate. J Math Anal Appl 325:724–733

    Article  MathSciNet  Google Scholar 

  15. Khan WA, Irfan M, Khan M, Alshomrani AS, Alzahrani AK, Alghamdi MS (2017) Impact of chemical processes on magneto nanoparticle for the generalized Burgers fuid. J Mol Liq. https://doi.org/10.1016/j.molliq.2017.03.078

    Article  Google Scholar 

  16. Turkyilmazoglu M (2017) Mixed convection flow of magnetohydrodynamic micropolar fluid due to a porous heated/cooled deformable plate: exact solutions. Int J Heat Mass Transf 106:127–134

    Article  Google Scholar 

  17. Zaman H (2013) Unsteady incompressible Couette flow problem for the Eyring–Powell model with porous wall. Am J Comput Math 3:313

    Article  Google Scholar 

  18. Mushtaq A, Mustafa M, Hayat T, Rahi M, Alsaedi A (2013) Exponentially stretching sheet in a Powell-Eyring fluid: numerical and series solutions. Z Naturforsch A 68:791–798

    Article  Google Scholar 

  19. Jalil M, Asghar S, Imran SM (2013) Self similar solutions for the flow and heat transfer of Powell–Eyring fluid over a moving surface in a parallel free stream. Int J Heat Mass Transf 65:73–79

    Article  Google Scholar 

  20. Rossca AV, Pop I (2014) Flow and heat transfer of Powell–Eyring fluid over a shrinking surface in a parallel free stream. Int J Heat Mass Transf 71:321–327

    Article  Google Scholar 

  21. Poonia M, Bhargava R (2014) Finite element study of Eyring–Powell fluid flow with convective boundary conditions. J Thermophys Heat Transf 28:499–506

    Article  Google Scholar 

  22. Powell RE, Eyring H (1944) Mechanisms for the relaxation theory of viscosity. Nature 154:427–428

    Article  Google Scholar 

  23. Malik MY, Hussain A, Nadeem S (2013) Boundary layer flow of an Eyring–Powell model fluid due to a stretching cylinder with variable viscosity. Sci Iran Trans B Mech Eng 20(2):313–321

    Google Scholar 

  24. Akbar NS, Nadeem S (2012) Characteristics of heating scheme and mass transfer on the peristaltic flow for an Eyring–Powell fluid in an endoscope. Int J Heat Mass Transf 55:375–383

    Article  Google Scholar 

  25. Rosca AV, Pop I (2014) Flow and heat transfer of Powell–Eyring fluid over a shrinking surface in a parallel free stream. Int J Heat Mass Transf 71:321–327

    Article  Google Scholar 

  26. Hayat T, Nadeem S (2017) Aspects of developed heat and mass flux models on 3D flow of Eyring–Powell fluid. Results Phys. https://doi.org/10.1016/j.rinp.2017.09.048

    Article  Google Scholar 

  27. Crane LJ (1970) Flow past a stretching plate. J Appl Math Phys (ZAMP) 21:645–647

    Article  Google Scholar 

  28. Turkyilmazoglu M (2014) Exact solutions for two-dimensional laminar flow over a continuously stretching or shrinking sheet in an electrically conducting quiescent couple stress fluid. Int J Heat Mass Transf 72:1–8

    Article  Google Scholar 

  29. Hayat T, Nadeem S (2016) Induced magnetic field stagnation point flow of nanofluid past convectively heated stretching sheet with Buoyancy effects. Chin Phys B 25(11):114701. https://doi.org/10.1088/1674-1056/25/11/114701

    Article  Google Scholar 

  30. Turkyilmazoglu M (2016) Equivalences and correspondences between the deforming body induced flow and heat in two-three dimensions. Phys Fluids 28:043102

    Article  Google Scholar 

  31. Turkyilmazoglu M (2015) An analytical treatment for the exact solutions of MHD flow and heat over two-three dimensional deforming bodies. Int J Heat Mass Transf 90:781–789

    Article  Google Scholar 

  32. Hayat T, Nadeem S (2017) Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results Phys 7:2317–2324

    Article  Google Scholar 

  33. Liao SJ (2008) Beyond perturbation: a review on the homotopy analysis method and its applications. Adv Mech 153:1–34

    Google Scholar 

  34. Ghotbi AR (2009) Homotopy analysis method for solving the MHD flow over a non-linear stretching sheet. Commun Nonlinear Sci Num Simul 14:2653–2663

    Article  Google Scholar 

  35. Abbasbandy S (2006) The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys Lett A 360:109–113

    Article  MathSciNet  Google Scholar 

  36. Turkyilmazoglu M (2016) An effective approach for evaluation of the optimal convergence control parameter in the homotopy analysis method. FILOMAT 30:1633–1650

    Article  MathSciNet  Google Scholar 

  37. Hayat T, Nadeem S (2017) The effects of MHD and buoyancy on hematite water-based fluid past a convectively heated stretching sheet. Neural Comput Appl. https://doi.org/10.1007/s00521-017-3139-9

    Article  Google Scholar 

  38. Hsiao KL (2016) Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2016.08.208

    Article  Google Scholar 

  39. Khan M, Irfan M, Khan WA, Ahmad L (2017) Modeling and simulation for 3D magneto Eyring–Powell nanomaterial subject to nonlinear thermal radiation and convective heating. Results Phys 7:1899–1906

    Article  Google Scholar 

  40. Khan WA, Irfan M, Khan M, Alshomrani AS, Alzahrani AK, Alghamdi MS (2017) Impact of chemical processes on magneto nanoparticle for the generalized Burgers fluid. J Mol Liq 234:201–208

    Article  Google Scholar 

  41. Turkyilmazoglu M (2016) Determination of the correct range of physical parameters in the approximate analytical solutions of nonlinear equations using the Adomian decomposition method. Mediterr J Math 13:4019–4037

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanzila Hayat.

Additional information

Technical Editor: Cezar Negrao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Nadeem, S. An optimal solution of Cattaneo–Christov heat flux model and chemical processes for 3D flow of Eyring–Powell fluid. J Braz. Soc. Mech. Sci. Eng. 40, 538 (2018). https://doi.org/10.1007/s40430-018-1451-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1451-7

Keywords

Navigation