Skip to main content
Log in

Bifurcation and chaos analysis for a spur gear pair system with friction

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Considering time-varying meshing stiffness, gear backlash, static transmission error and tooth face friction, a nonlinear dynamic model for a spur gear pair is proposed to research systematically the dynamic behaviors of system, in which the meshing stiffness of gear pair is deduced and calculated in terms of the extending period method. Meanwhile, the sliding friction force under single-tooth and double-tooth meshing regions is constructed as a function of the meshing principle. Based on the developed model, the bifurcation and chaos characteristics of system under lightly and heavily loaded conditions are studied, respectively, by applied Runge–Kutta numerical method, and the parametric effects of rotational speed, damping ratio and gear backlash on the dynamic behaviors are investigated detailedly. Bifurcation diagram, three-dimensional frequency spectrum, time-domain waveform, frequency plot, phase diagram, Poincaré map and dynamic load are used to discuss and determine motion states and dynamic responses of system. The numerical results represent that with the change of control parameters the system undergoes various types of motion states under different loaded conditions. The corresponding meshing contact states of tooth pair are transformed among no impact, single-sided impact and double-sided impact. The research results can provide certain guidance for choosing suitable parameter values to reduce the amplitude of vibration and even avoid the chaotic response in gear system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

References

  1. Xiang L, Nan G (2017) Coupled torsion–bending dynamic analysis of gear–rotor–bearing system with eccentricity fluctuation. Appl Math Model 50:569–584

    Article  MathSciNet  Google Scholar 

  2. Zhou S, Song G, Ren Z et al (2016) Nonlinear dynamic analysis of coupled gear–rotor–bearing system with the effect of internal and external excitations. Chin J Mech Eng 29(2):281–292

    Article  Google Scholar 

  3. Kahraman A, Singh R (1990) Non-linear dynamics of a spur gear pair. J Sound Vib 142(1):49–75

    Article  Google Scholar 

  4. Kahraman A, Singh R (1991) Non-linear dynamics of a geared rotor-bearing system with multiple clearances. J Sound Vib 144(3):469–506

    Article  Google Scholar 

  5. Kahraman A, Singh R (1991) Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system. J Sound Vib 146(1):135–156

    Article  Google Scholar 

  6. Raghothama A, Narayanan S (1999) Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method. J Sound Vib 226(3):469–492

    Article  Google Scholar 

  7. Theodossiades S, Natsiavas S (2000) Non-linear dynamics of gear pair systems with periodic stiffness and backlash. J Sound Vib 229(2):287–310

    Article  Google Scholar 

  8. Al-Shyyab A, Kahraman A (2005) Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method: period-one motions. J Sound Vib 284:151–172

    Article  Google Scholar 

  9. Al-Shyyab A, Kahraman A (2005) Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method: sub-harmonic motions. J Sound Vib 279:417–451

    Article  Google Scholar 

  10. Shen Y, Yang S, Liu X (2006) Nonlinear dynamics of a spur gear pair with time-varying stiffness and backlash based on incremental harmonic balance method. Int J Mech Sci 48(11):1256–1263

    Article  Google Scholar 

  11. Walha L, Fakhfakh T, Haddar M (2006) Backlash effect on dynamic analysis of a two-stage spur gear system. J Fail Anal Prev 6(3):60–68

    Article  Google Scholar 

  12. Chang-Jian CW (2010) Strong nonlinearity analysis for gear bearing system under nonlinear suspension—bifurcation and chaos. Nonlinear Anal Real World Appl 6(3):1760–1774

    Article  MathSciNet  Google Scholar 

  13. Farshidianfar A, Saghafi A (2014) Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems. Nonlinear Dyn 75(4):783–806

    Article  MathSciNet  Google Scholar 

  14. Farshidianfar A, Saghafi A (2014) Bifurcation and chaos prediction in nonlinear gear systems. Shock Vib 2014:1–8

    Article  Google Scholar 

  15. Zhao M, Ji J (2015) Nonlinear torsional vibrations of a wind turbine gearbox. Appl Math Model 39(16):4928–4950

    Article  MathSciNet  Google Scholar 

  16. Wang J, He G, Zhang J et al (2017) Nonlinear dynamics analysis of the spur gear system for railway locomotive. Mech Syst Signal Process 85:41–55

    Article  Google Scholar 

  17. Gou X, Zhu L, Qi C (2017) Nonlinear dynamic model of a gear–rotor–bearing system considering the flash temperature. J Sound Vib 410:187–208

    Article  Google Scholar 

  18. Liu Z, Liu Z, Zhao J et al (2017) Study on interactions between tooth backlash and journal bearing clearance nonlinearity in spur gear pair system. Mech Mach Theory 107:229–245

    Article  Google Scholar 

  19. Howard I, Jia S, Wang J (2001) The dynamic modelling of a spur gear in mesh including friction and a crack. Mech Syst Signal Process 15(5):831–853

    Article  Google Scholar 

  20. Vaishya M, Singh R (2001) Analysis of periodically varying gear mesh systems with coulomb friction using Floquet theory. J Sound Vib 243(3):525–545

    Article  Google Scholar 

  21. Vaishya M, Singh R (2001) Sliding friction-induced non-linearity and parametric effects in gear dynamics. J Sound Vib 248(4):671–694

    Article  Google Scholar 

  22. He S, Cho S, Singh R (2008) Prediction of dynamic friction forces in spur gears using alternate sliding friction formulations. J Sound Vib 309:843–851

    Article  Google Scholar 

  23. Wang J, Zheng J, Yang A (2012) An analytical study of bifurcation and chaos in a spur gear pair with sliding friction. In: International conference on advances in computational modeling and simulation. Kunming, Procedia Engineering, vol 31, pp 563–570

    Article  Google Scholar 

  24. Chen S, Tang J, Luo C et al (2011) Nonlinear dynamic characteristics of geared rotor bearing systems with dynamic backlash and friction. Mech Mach Theory 46(4):466–478

    Article  Google Scholar 

  25. Moradi H, Salarieh H (2012) Analysis of nonlinear oscillations in spur gear pairs with approximated modelling of backlash nonlinearity. Mech Mach Theory 51(5):14–31

    Article  Google Scholar 

  26. Xiang L, Jia Y, Li Y et al (2016) Nonlinear dynamic features of a gear system with multi-DOF subjected to internal and external excitation. J Vib Shock 35(13):153–159 (in Chinese)

    Google Scholar 

  27. Liu X, Yang Y, Zhang J (2016) Investigation on coupling effects between surface wear and dynamics in a spur gear system. Tribol Int 101:383–394

    Article  Google Scholar 

  28. Jiang H, Liu F (2017) Dynamic modeling and analysis of spur gears considering friction–vibration interactions. J Braz Soc Mech Sci Eng 39:4911–4920

    Article  Google Scholar 

  29. Wang Y, Liu J, Li Y et al (2017) Parametric vibration stability of locomotive gear transmission system with tooth surface friction. J Traffic Transp Eng 17(2):52–63

    Google Scholar 

  30. Zhou S, Song G, Sun M et al (2018) Nonlinear dynamic response analysis on gear–rotor–bearing transmission system. J Vib Control 24(9):1632–1651

    Article  MathSciNet  Google Scholar 

  31. Sun Z, Shen Y, Li H (2003) Coexistence of trivial and strange attractors in star gear systems. J Vib Eng 16(2):242–246

    Google Scholar 

  32. Buckingham E (1949) Analytical mechanics of gears. Dover, New York

    Google Scholar 

  33. Sheng D, Zhu R, Jin G et al (2015) Dynamic load sharing behavior of transverse-torsional coupled planetary gear train with multiple clearances. J Cent South Univ 22:2521–2532

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51575320) and Taishan Scholar Foundation (TS20130922).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wan.

Additional information

Technical Editor: Pedro Manuel Calas Lopes Pacheco, D.Sc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Wan, Y. & Liu, Z. Bifurcation and chaos analysis for a spur gear pair system with friction. J Braz. Soc. Mech. Sci. Eng. 40, 529 (2018). https://doi.org/10.1007/s40430-018-1443-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1443-7

Keywords

Navigation