Skip to main content

Advertisement

Log in

Vibrational control scrutiny of physically affected SWCNT acted upon by a moving nanoparticle in the framework of nonlocal–strain gradient theory

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The possibility of moving drug materials into the intelligent nano-materials such as nanotubes such as set of DNA or RNA molecules to change the behavior of cells is an important problem in the nano-medicine science. This paper deals with vibrational control of magnetically thermally affected single-walled carbon nanotube (SWCNT) under a moving nanoparticle using the nonlocal–strain gradient theory based on the Rayleigh beam model. The elastic medium is modeled as Pasternak substrate. A gain matrix with time-varying behaviors and displacement–velocity feedback in the framework of linear classical optimal control procedure is used to suppress the vibration responses of the SWCNT. Hamilton, Galerkin and Newmark time integration principles are jointly utilized to ascertain the equations of motion. The influences of the nonlocal and material length-scale parameters, the velocity of nanoparticle and physical fields on the vibration behavior of the SWCNT are explored. Likewise, a specified control algorithm in suppressing the vibrational behavior of SWCNT under the effect of moving nanoparticle is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  Google Scholar 

  2. Che G, Lakshmi BB, Fisher ER, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349

    Article  Google Scholar 

  3. Hummer GJ, Rasaiah C, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–200

    Article  Google Scholar 

  4. Rao CNR, Satishkumar BC, Govindaraj A, Nath M (2001) Nanotubes Chem Phys Chem 2(2):78–105

    Article  Google Scholar 

  5. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679

    Article  Google Scholar 

  6. Hilder TA, Hill JM (2008) Carbon nanotubes as drug delivery nanocapsules. Curr Appl Phys 8:258–261

    Article  Google Scholar 

  7. Ghorbanpour Arani A, Roudbari MA, Amir S (2014) Nonlocal vibration of SWBNNT embedded in bundle of CNTs under a moving nanoparticle. Phys B 452:3646–3653

    Article  Google Scholar 

  8. Ghorbanpour Arani A, Roudbari MA, Amir S (2016) Longitudinal magnetic field effect on wave propagation of fluid-conveyed SWCNT using Knudsen number and surface considerations. Appl.Math Modell 40(3):2025–2038

    Article  MathSciNet  Google Scholar 

  9. Kiani K, Wang Q (2012) On the interaction of a single-walled carbon nanotube with a moving nanoparticle using nonlocal Rayleigh, Timoshenko, and higher-order beam theories. Eur J Mech A Solids 31:179-02

    Article  MathSciNet  Google Scholar 

  10. Skoulidas AI et al (2002) Rapid transport of gases in carbon nanotubes. Phys Rev Lett 89(18):185901

    Article  Google Scholar 

  11. Majumder M et al (2005) Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438:44

    Article  Google Scholar 

  12. Holt JK et al (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776):1034–1037

    Article  Google Scholar 

  13. Kiani K, Nikkhoo A, Mehri B (2009) Prediction capabilities of classical and shear deformable beam models excited by a moving mass. J Sound Vib 320(3):632–648

    Article  Google Scholar 

  14. Kiani K (2010) Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects. Phys E 42(9):2391–2401

    Article  Google Scholar 

  15. Kiani K (2014) Nanoparticle delivery via stocky single-walled carbon nanotubes: a nonlinear-nonlocal continuum-based scrutiny. Compos Struct 116:254–272

    Article  Google Scholar 

  16. Kiani K (2014) Nonlinear vibrations of a single-walled carbon nanotube for delivering of nanoparticles. Nonlinear Dyn 76(4):1885–1903

    Article  MathSciNet  Google Scholar 

  17. Simsek M (2010) Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory. Int J Eng Sci 48:1721–1732

    Article  Google Scholar 

  18. Kiani K, Mehri B (2010) Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories. J Sound Vib 329:2241–2264

    Article  Google Scholar 

  19. Kiani K (2011) Application of nonlocal beam models to double-walled carbon nanotubes under a moving nanoparticle. Part I: theoretical formulations. Acta Mech 216:165–195

    Article  Google Scholar 

  20. Kiani K (2011) Application of nonlocal beam models to double-walled carbon nanotubes under a moving nanoparticle. Part II: parametric study. Acta Mech 216:197–206

    Article  Google Scholar 

  21. Ghorbanpour Arani A, Roudbari MA, Kiani K (2016) Vibration of double-walled carbon nanotubes coupled by temperature-dependent medium under a moving nanoparticle with multi physical fields. Mech Adv Mater Struct 23:281–291

    Article  Google Scholar 

  22. Simsek M (2011) Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle. Comput Mat Sci 50:2112–2123

    Article  Google Scholar 

  23. Yang JN, Akbarpur A, Ghaemmaghami P (1987) New optimal control algorithms for structural control. J Eng Mech 113(9):1369–1386

    Article  Google Scholar 

  24. Tadjbakhsh IG, Rofooei FR (1992) Optimal hybrid control of structures under earthquake excitations. J Earthq Eng Struct Dyn 21(3):233–252

    Article  Google Scholar 

  25. Rofooei FR, Monajemi-Nejad S (2005) Decentralized control of tall buildings. J Struct Des Tall Spec Build 14(6):488–504

    Google Scholar 

  26. Sung YG (2002) Modeling and control with piezoactuators for a simply supported beam under a moving mass. J Sound Vib 250(4):617–626

    Article  MathSciNet  Google Scholar 

  27. Li L, Hu Y, Li X (2016) Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. Int J Mech Sci 115:135–144

    Article  Google Scholar 

  28. Lim CW, Zhang G, Reddy JN (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313

    Article  MathSciNet  Google Scholar 

  29. Li L, Hu Y (2015) Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int J Eng Sci 97:84–94

    Article  MathSciNet  Google Scholar 

  30. Li L, Hu Y (2016) Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory. Comput Mat Sci 112:282–288

    Article  Google Scholar 

  31. Li L, Hu Y, Ling L (2016) Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory. Phys E 75:118–124

    Article  Google Scholar 

  32. Barati MR (2017) Dynamic response of porous functionally graded material nanobeams subjected to moving nanoparticle based on nonlocal strain gradient theory. Mater Res Express 4:115017

    Article  Google Scholar 

  33. Shahsavari D, Karami B, Janghorban M, Li L (2017) Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment. Mater Res Express 4:085013

    Article  Google Scholar 

  34. Bakhshi Khaniki H, Hosseini-Hashemi Sh (2017) Buckling analysis of tapered nanobeams using nonlocal strain gradient theory and generalized differential quadrature method. Mater Res Express 4:065003

    Article  Google Scholar 

  35. Taylor J (2002) New dimensions for manufacturing: a UK strategy for nanotechnology. Nanotechnology, DTI

  36. Köhler M, Fritzsche W (2004) Nanotechnology: an Introduction to nanostructuring techniques. Wiley-VCH, Weinheim

    Book  Google Scholar 

  37. Fennimore AM, Yuzvinsky TD, Han WQ, Fuhrer MS, Comings J, Zettl A (2003) Rotational actuators based on carbon nanotubes. Nature 424:408–410

    Article  Google Scholar 

  38. Cornelius T (2007) Handbook techniques and applications design methods; fabrication techniques; manufacturing methods; sensors and actuators; medical applications. Springer, New York

    Google Scholar 

  39. Grigorov AV, Davis ZJ, Rasmussen PA, Boisen A (2004) A longitudinal thermal actuation principle for mass detection using a resonant microcantilever in a fluid medium. Microelectr. Eng. 73:881–886

    Article  Google Scholar 

  40. Ramaratnam A, Jalili N (2004) Novel carbon nanotube reinforced electro-active polymer sensors for structural vibration control. In: ASME international mechanical engineering congress and exposition, pp 533–539

  41. Eltaher MA, Agwa MA, Mahmoud FF (2016) Nanobeam sensor for measuring a zeptogram mass. Int J Mech Mater Des 12(2):211–221

    Article  Google Scholar 

  42. Hosseini MR, Jalili N (2007) A new nanomechanical cantilever sensing paradigm using piezoelectric boron nitride nanotube-based actuation. In: ASME international design engineering technical conferences and computers and information in engineering conference, pp 759–769

  43. Noghrehabadi AR, Tadi Beni Y, Koochi A, Sadat Kazemi A, Yekrangi A, Abadyan MR, Noghreh Abadi M (2011) Closed-form approximations of the pull-in parameters and stress field of electrostatic cantilever nano-actuators considering van der Waals attraction. Procedia Eng 10:3750–3756

    Article  Google Scholar 

  44. Sedighi HM, Koochi A, Abadyan MR (2014) Modeling the size dependent static and dynamic pull-in instability of cantilever nanoactuator based on strain gradient theory. Int J Appl Mech 6(5):1450055

    Article  Google Scholar 

  45. Koochi A, Farrokhabadi A, Abadyan MR (2015) Modeling the size dependent instability of NEMS sensor/actuator made of nano-wire with circular cross-section. Microsyst Technol 21:355–364

    Article  Google Scholar 

  46. Ghorbanpour Arani A, Roudbari MA (2014) Surface stress, initial stress and Knudsen-dependent flow velocity effects on the electro-thermo nonlocal wave propagation of SWBNNTs. Phys B 452:159–165

    Article  Google Scholar 

  47. Ghorbanpour Arani A, Jalilvand A, Ghaffari M, Talebi Mazraehshahi M, Kolahchi R, Roudbari MA, Amir S (2014) Nonlinear pull-in instability of boron nitride nano-switches considering electrostatic and Casimir forces. Scientia Iranica F 21(3):1183–1196

    Google Scholar 

  48. Ghorbanpour Arani A, Karamali Ravandi A, Roudbari MA, Azizkhani MB, Hafizi Bidgoli A (2015) Axial and transverse vibration of SWBNNT system coupled Pasternak foundation under a moving nanoparticle using Timoshenko beam theory. J Solid Mech 7(3):239–254

    Google Scholar 

  49. Ghorbanpour Arani A, Roudbari MA (2013) Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle. Thin Solid Films 542(2):232–241

    Article  Google Scholar 

  50. Kiani K (2011) Nonlocal continuum-based modeling of a nanoplate subjected to a moving nanoparticle. Part I: Theoretical formulations. Phys E 44(1):229–248

    Article  Google Scholar 

  51. Ghorbanpour Arani A, Hafizi Bidgoli A, Karamali Ravandi A, Roudbari MA, Amir S, Azizkhani MB (2013) Induced nonlocal electric wave propagation of boron nitride nanotubes. J Mech Sci Technol 27(10):3063–3071

    Article  Google Scholar 

  52. Nikkhoo A, Zolfaghari S, Kiani K (2017) A simplified-nonlocal model for transverse vibration of nanotubes acted upon by a moving nanoparticle. J Braz Soc Mech Sci Eng 39(12):4929–4941

    Article  Google Scholar 

  53. Bakhshi Khaniki H, Hosseini-Hashemi Sh (2017) The size-dependent analysis of multilayered microbridge systems under a moving load/mass based on the modified couple stress theory. Eur Phys J Plus 132:200

    Article  Google Scholar 

  54. Kiani K (2014) Nonlocal discrete and continuous modeling of free vibration of stocky ensembles of vertically aligned single-walled carbon nanotubes. Curr Appl Phys 14:1116–1139

    Article  Google Scholar 

  55. Lennard-Jones JE (1924) The determination of molecular fields: from the variation of the viscosity of a gas with temperature. Proc R Soc Lond Ser A 106:441–462

    Article  Google Scholar 

  56. Ghorbanpour Arani A, Zarei MSh (2015) Nonlocal vibration of Y-shaped CNT conveying nano-magnetic viscous fluid under magnetic field. Ain Shams Eng J 6(2):565–575

    Article  Google Scholar 

  57. Soong TT (1990) Active structural control: theory and practice. Longman Scientific and Technical, Essex

    Google Scholar 

  58. Bagheri A, Roudbari MA, Mahmoudabadi MJ (2010) Adaptive and sliding mode control for non-linear systems. Int J Adv Design Manuf Technol 3(4):57–62

    Google Scholar 

  59. Burl JB (1998) Linear optimal control: H (2) and H (infinity) methods. Addison-Wesley, Boston

    Google Scholar 

  60. Nikkhoo A, Rofooei FR, Shadnam MR (2007) Dynamic behavior and modal control of beams under moving mass. J Sound Vib 306:712–724

    Article  MathSciNet  Google Scholar 

  61. Pirmohammadi AA, Pourseifi M, Rahmani O, Hoseini SAH (2014) Modeling and active vibration suppression of a single-walled carbon nanotube subjected to a moving harmonic load based on a nonlocal elasticity theory. Appl Phys A 117:1547–1555

    Article  Google Scholar 

  62. Pourseifi M, Rahmani O, Hoseini SAH (2015) Active vibration control of nanotube structures under a moving nanoparticle based on the nonlocal continuum theories. Meccanica 50(5):1351–1369

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the reviewers for their comments and suggestions to improve the clarity of this article. This study was not funded by any organization, and there is no grant number associated with this project. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Abbas Roudbari.

Additional information

Technical Editor: Paulo de Tarso Rocha de Mendonça.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roudbari, M.A., Doroudgar Jorshari, T. Vibrational control scrutiny of physically affected SWCNT acted upon by a moving nanoparticle in the framework of nonlocal–strain gradient theory. J Braz. Soc. Mech. Sci. Eng. 40, 499 (2018). https://doi.org/10.1007/s40430-018-1421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1421-0

Keywords

Navigation