Skip to main content
Log in

Mechanical design and preliminary tests of VS-AnkleExo

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Exoskeletons and wearable robotic systems have advanced substantially over the last decade for gait assistance, rehabilitation and load-carrying purposes. Currently, there are commercially available devices with stiff actuators. However, these actuators cannot adapt to their unpredictable environments. Thus, compliant actuators like series elastic and variable stiffness actuators have been implemented in exoskeletons and active orthoses. This paper presents a novel design and experimental characterization of a compliant actuator with adjustable stiffness for a lower limb wearable ankle robot (VS-AnkleExo). The proposed actuator is designed to mimic the behavior of biological ankle and maximizes the compliance between user and robot during a gait cycle. The adjustable stiffness of actuator is achieved through a controllable transmission ratio mechanism. Both transparency and tracking performance experiments are performed to demonstrate reduced the user–robot interaction force and improved the tracking performance of the proposed actuator, respectively. Experimental results showed that interaction forces between the user and robot are minimized in the transparency experiments, while the actuators proposed are able to track the given torque signals at various frequencies in the tracking experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Banala S, Agrawal K, Fattah SK, Krishnamoorthy V, Hsu WL, Scholz J, Rudolph K (2016) Gravity-balancing leg orthosis and its performance evaluation. IEEE Trans Rob 22(6):1228–1239

    Article  Google Scholar 

  2. Agrawal SK, Banala SK, Fattah A, Sangwan V, Krishnamoorthy V, Scholz JP, Hsu WL (2007) Assessment of motion of swing leg and gait rehabilitation with a gravity balancing exoskeleton. IEEE Trans Neural Syst Rehabil Eng 15(3):410–420

    Article  Google Scholar 

  3. Rahman T, Sample W, Seliktar R (2004) Design and testing of wrex. In: Bien ZZ, Stefanov D (eds) Advances in rehabilitation robotics, vol 306. Springer, Berlin, Heidelberg, pp 243–250

  4. De Santis A, Siciliano B, De Luca A, Bicchi A (2008) An atlas of physical human–robot interaction. Mech Mach Theory 43(3):253–270

    Article  Google Scholar 

  5. Pratt GA, Williamson MM (1995) Series elastic actuators. In: Proceedings IEEE/RSJ international conference on intelligent robots and systems 95 human robot interaction and cooperative robots 1995, vol 1, pp 399–406

  6. Kizilhan H, Baser O, Kilic E, Ulusoy N (2015) Comparison of controllable transmission ratio type variable stiffness actuator with antagonistic and pre-tension type actuators for the joints exoskeleton robots. In: 2015 12th international conference on informatics in control, automation and robotics (ICINCO), vol 2, pp 188–195

  7. Tonietti G, Schiavi R, Bicchi A (2005) Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction. In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp 526–531

  8. Hurst JW, Chestnutt JE, Rizzi AA (2010) The actuator with mechanically adjustable series compliance. IEEE Trans Rob 26(4):597–606

    Article  Google Scholar 

  9. Verrelst B, van Ham R, Vanderborght B, Daerden F, Lefeber D, Vermeulen J (2005) The pneumatic biped “Lucy” actuated with pleated pneumatic artificial muscles. Auton Rob 18(2):201–213

    Article  Google Scholar 

  10. Schiavi R, Grioli G, Sen S, Bicchi A (2008) VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans. In: IEEE international conference on robotics and automation, pp 2171–2176

  11. Catalano MG, Grioli G, Garabini M, Bonomo F, Mancini M, Tsagarakis N, Bicchi A (2011) Vsa-cubebot: a modular variable stiffness platform for multiple degrees of freedom robots. In: 2011 IEEE international conference on robotics and automation (ICRA), pp 5090–5095

  12. Hollander KW, Sugar TG, Herring DE (2005) Adjustable robotic tendon using a’Jack Spring’/spl trade. In: IEEE 9th international conference on rehabilitation robotics, icorr 2005, pp 113–118

  13. van Ham R, Vanderborght B, van Damme M, Verrelst B, Lefeber D (2007) MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: design and implementation in a biped robot. Rob Auton Syst 55(10):761–768

    Article  Google Scholar 

  14. Wolf S, Hirzinger G (2008) A new variable stiffness design: matching requirements of the next robot generation. In: IEEE international conference on robotics and automation, ICRA 2008, pp 1741–1746

  15. Jafari A, Tsagarakis NG, Vanderborght B, Caldwell DG (2010) A novel actuator with adjustable stiffness (AwAS). In: 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 4201–4206

  16. Jafari A, Tsagarakis NG, Caldwell DG (2011) AwAS-II: a new actuator with adjustable stiffness based on the novel principle of adaptable pivot point and variable lever ratio. In: 2011 IEEE international conference on robotics and automation (ICRA), pp 4638–4643

  17. Groothuis SS, Rusticelli G, Zucchelli A, Stramigioli S, Carloni R (2012) The vsaUT-II: a novel rotational variable stiffness actuator. In: 2012 IEEE international conference on robotics and automation (ICRA), pp 3355–3360

  18. Pratt JE, Krupp BT, Morse CJ, Collins SH (2004) The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. In: 2004 IEEE international conference on robotics and automation, proceedings. ICRA’04, vol 3, pp 2430–2435

  19. Kwa HK, Noorden JH, Missel M, Craig T, Pratt JE, Neuhaus PD (2009) Development of the IHMC mobility assist exoskeleton. In: IEEE international conference on robotics and automation, ICRA’09, pp 2556–2562

  20. Vallery H, Veneman J, van Asseldonk E, Ekkelenkamp R, Buss M, van der Kooij H (2008) Compliant actuation of rehabilitation robots. IEEE Rob Autom Mag 15(3):60–69

    Article  Google Scholar 

  21. Veneman JF, Ekkelenkamp R, Kruidhof R, van der Helm FC, van der Kooij H (2006) A series elastic-and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. Int J Rob Res 25(3):261–281

    Article  Google Scholar 

  22. Cherelle P, Grosu V, Beyl P, Mathys A, van Ham R, van Damme M, Lefeber D (2010) The MACCEPA actuation system as torque actuator in the gait rehabilitation robot ALTACRO. In: 3rd IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics (BioRob), pp 27–32

  23. Beyl P, van Damme M, van Ham R, Vanderborght B, Lefeber D (2014) Pleated pneumatic artificial muscle-based actuator system as a torque source for compliant lower limb exoskeletons. IEEE/ASME Trans Mechatron 19(3):1046–1056

    Article  Google Scholar 

  24. Cestari M, Sanz-Merodio D, Arevalo JC, Garcia E (2015) An adjustable compliant joint for lower-limb exoskeletons. IEEE/ASME Trans Mechatron 20(2):889–898

    Article  Google Scholar 

  25. Hutter M, Remy CD, Hoepflinger MA, Siegwart R (2013) Efficient and versatile locomotion with highly compliant legs. IEEE/ASME Trans Mechatron 18(2):449–458

    Article  Google Scholar 

  26. Mosadeghzad M, Medrano-Cerda GA, Saglia JA, Tsagarakis NG, Caldwell DG (2012) Comparison of various active impedance control approaches, modeling, implementation, passivity, stability and trade-offs. In: IEEE/ASME international conference on advanced intelligent mechatronics (AIM), pp 342–348

  27. Wang S, Meijneke C, van der Kooij H (2013) Modeling, design, and optimization of Mindwalker series elastic joint. In: 2013 IEEE international conference on rehabilitation robotics (ICORR), pp 1–8

  28. Accoto D, Carpino G, Sergi F, Tagliamonte NL, Zollo L, Guglielmelli E (2013) Design and characterization of a novel high-power series elastic actuator for a lower limb robotic orthosis. Int J Adv Rob Syst 10(10):359

    Article  Google Scholar 

  29. Liu L, Leonhardt S, Misgeld BJ (2016) Design and control of a mechanical rotary variable impedance actuator. Mechatronics 39:226–236

    Article  Google Scholar 

  30. Adams RJ, Hannaford B (2002) Control law design for haptic interfaces to virtual reality. IEEE Trans Control Syst Technol 10(1):3–13

    Article  Google Scholar 

  31. Shamaei K, Sawicki GS, Dollar AM (2013) Estimation of quasi-stiffness and propulsive work of the human ankle in the stance phase of walking. PLoS ONE 8(3):e59935

    Article  Google Scholar 

  32. Vanderborght B, Albu-Schäffer A, Bicchi A, Burdet E, Caldwell DG, Carloni R, Catalona M, Ganesh G, Garabini M, Grioli G, Haddadin S, Jafari A, Laffranchi M, Lefeder D, Petit F, Stramigioli S, Grebenstein A, Tsagarakis N, van Damme M, van Ham R, Visse L, Wolf S (2013) Variable impedance actuators: a review. Rob Auton Syst 61(12):1601–1614

    Article  Google Scholar 

  33. Bovi G, Rabuffetti M, Mazzoleni P, Ferrarin M (2011) A multiple-task gait analysis approach: kinematic, kinetic and EMG reference data for healthy young and adult subjects. Gait Posture 33(1):6–13

    Article  Google Scholar 

  34. Holgate MA, Hitt JK, Bellman RD, Sugar TG, Hollander KW (2008) The SPARK (Spring Ankle with Regenerative kinetics) project: choosing a DC motor based actuation method. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics, pp 163–168

  35. Paine N, Oh S, Sentis L (2014) Design and control considerations for high-performance series elastic actuators. IEEE/ASME Trans Mechatron 19(3):1080–1091

    Article  Google Scholar 

  36. Robinson D. (2000) Design and analysis of series elasticity in closed-loop actuator force control”, PhD. Thesis, Massachusetts Institute of Technology

Download references

Acknowledgements

The author would like thank to TUBITAK (The Scientific and Technological Research Council of Turkey) for the financial support of a research Project Numbered with 213M297, and Ozan Erol and Ergin Kilic for their inputs for manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozgur Baser.

Additional information

Technical Editor: Victor Juliano De Negri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baser, O., Kizilhan, H. Mechanical design and preliminary tests of VS-AnkleExo. J Braz. Soc. Mech. Sci. Eng. 40, 442 (2018). https://doi.org/10.1007/s40430-018-1365-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1365-4

Keywords

Navigation