Skip to main content
Log in

Free vibrations of rotationally restrained nonhomogeneous circular beams by means of the Green function

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

A one-dimensional linear model is developed to tackle the free vibrations of nonhomogeneous circular beams. The material distribution can depend symmetrically on the cross-sectional coordinates. It can be either continuous (functionally graded materials) or constant in the layers that constitute the beam (multi-layered material). The end supports are identical rotationally restrained pins by means of linear rotational springs. The extensibility of the beam centerline is incorporated into the mechanical model. We determine the Green function matrix of the related problem in closed form. With this in hand, a numerical technique (based on the Fredholm theory) is used to tackle the vibratory problem. Thus, it is possible not only to get the eigenfrequencies but also to find out how the spring stiffness affects the dynamic behavior. Graphical results contribute to the better understanding of the issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Den Hartog JP (1928) Vibration of frames of electrical machines. Trans Am Soc Mech Eng J Appl Mech 50:1–6

    Google Scholar 

  2. Volterra E, Morrel JD (1961) Lowest natural frequency of elastic arc for vibrations outside the plane of initial curvature. J Appl Mech 12:624–627. https://doi.org/10.1115/1.3641794

    Article  MathSciNet  Google Scholar 

  3. Volterra E, Morrel JD (1961) On the fundamental frequencies of curved beams. Bull Polytech Inst Jassy 7(11):1–2

    Google Scholar 

  4. Timoshenko S (1955) Vibration problems in engineering. D. Van Nonstrand, New York

    MATH  Google Scholar 

  5. Márkus S, Nánási T (1981) Vibration of curved beams. Shock Vib Dig 13(4):3–14. https://doi.org/10.1177/058310248101300403

    Article  MATH  Google Scholar 

  6. Laura PAA, Maurizi MJ (1987) Recent research on vibrations of arch-type structures. Shock Vib Dig 19(1):6–9

    Article  Google Scholar 

  7. Chidamparam P, Leissa AW (1993) Vibrations of planar curved beams, rings and arches. Appl Mech Rev ASME 46(9):467–483. https://doi.org/10.1115/1.3120374

    Article  Google Scholar 

  8. Qatu MS, Elsharkawy AA (1993) Vibration of laminated composite arches with deep curvature and arbitrary boundaries. Comput Struct 47(2):305–311. https://doi.org/10.1016/0045-7949(93)90381-M

    Article  Google Scholar 

  9. Kang K, Bert CW, Striz AG (1995) Vibration analysis of shear deformable circular arches by the differential quadrature method. J Sound Vib 181(2):353–360. https://doi.org/10.1006/jsvi.1995.0258

    Article  MATH  Google Scholar 

  10. Tüfekçi E, Arpaci A (1997) Exact solution of in-plane vibrations of circular arches with account taken of axial extension, transverse shear and rotatory inertia affects. J Sound Vib 209(5):845–856. https://doi.org/10.1006/jsvi.1997.1290

    Article  Google Scholar 

  11. Krishnan A, Suresh YJ (1998) A simple cubic linear element for static and free vibration analyses of curved beams. Comput Struct 68:473–489. https://doi.org/10.1016/S0045-7949(98)00091-1

    Article  MATH  Google Scholar 

  12. Huang CS, Nieh KY, Yang MC (2003) In-plane free vibration and stability of loaded and shear-deformable circular arches. Int J Sol Struct 40:5865–5886. https://doi.org/10.1016/S0020-7683(03)00393-7

    Article  MATH  Google Scholar 

  13. Kang B, Riedel CH, Tan CA (2003) Free vibration analysis of planar curved beams by wave propagation. J Sound Vib 260:19–44. https://doi.org/10.1016/S0022-460X(02)00898-2

    Article  Google Scholar 

  14. Ecsedi I, Dluhi K (2005) A linear model for the static and dynamic analysis of non-homogeneous curved beams. Appl Math Model 29(12):1211–1231. https://doi.org/10.1016/j.apm.2005.03.006

    Article  MATH  Google Scholar 

  15. Ecsedi I, Baksa A (2012) A note on the pure bending of nonhomogeneous prismatic bars. Int J Mech Eng Educ 37(2):118–129. https://doi.org/10.7227/IJMEE.37.2.4

    Google Scholar 

  16. Ecsedi I, Gönczi D (2015) Thermoelastic stresses in nonhomogeneous prismatic bars. Ann Fac Eng Hunedoara Int J Eng 13(2):49–52

    Google Scholar 

  17. Ecsedi I, Lengyel ÁJ (2015) Curved composite beam with interlayer slip loaded by radial load. Curved Layer Struct 2(1):50–58. https://doi.org/10.1515/cls-2015-0004

    Google Scholar 

  18. Ozturk H (2011) In-plane free vibration of a pre-stressed curved beam obtained from a large deflected cantilever beam. Finite Elem Anal Des 47:229–236. https://doi.org/10.1016/j.finel.2010.10.003

    Article  Google Scholar 

  19. Çalim FF (2012) Forced vibration of curved beams on two-parameter elastic foundation. Appl Math Model 36:964–973. https://doi.org/10.1016/j.apm.2011.07.066

    Article  MathSciNet  MATH  Google Scholar 

  20. Hajianmaleki M, Qatu MS (2012) Static and vibration analyses of thick, generally laminated deep curved beams with different boundary conditions. Comput Part B Eng 43:1767–1775. https://doi.org/10.1016/j.compositesb.2012.01.019

    Article  Google Scholar 

  21. Hajianmaleki M, Qatu MS (2013) Vibrations of straight and curved composite beams: a review. Comput Struct 100:218–232. https://doi.org/10.1016/j.compstruct.2013.01.001

    Article  Google Scholar 

  22. Kovács B (2013) Vibration analysis of layered curved arch. J Sound Vib 332:4223–4240. https://doi.org/10.1007/978-3-642-36691-8_93

    Article  Google Scholar 

  23. Wu JS, Lin FT, Shaw HJ (2012) Free in-plane vibration analysis of a curved beam (arch) with arbitrary various concentrated elements. Appl Math Model 37:7588–7610. https://doi.org/10.1016/j.apm.2013.02.029

    Article  MathSciNet  Google Scholar 

  24. Jun L, Guangweia R, Jina P, Xiaobina L, Weiguoa W (2014) Free vibration analysis of a laminated shallow curved beam based on trigonometric shear deformation theory. Mech Bas Des Struct Mach 42(1):111–129. https://doi.org/10.1080/15397734.2013.846224

    Article  Google Scholar 

  25. Juna L, Hongxinga H (2009) Variationally consistent higher-order analysis of harmonic vibrations of laminated beams. Mech Bas Des Struct Mach 37(3):229–326. https://doi.org/10.1080/15397730902932608

    Google Scholar 

  26. Ziane N, Meftah SA, Belhadj HA, Tounsi A, Bedia EAA (2013) Free vibration analysis of thin and thick-walled FGM box beams. Int J Mech Sci 66:273–282. https://doi.org/10.1016/j.ijmecsci.2012.12.001

    Article  Google Scholar 

  27. Mashat DS, Carrera E, Zenkour AM, Khateeb SAA, Filippi M (2014) Free vibration of FGM layered beams by various theories and finite elements. Comput Part B 59:269–278. https://doi.org/10.1016/j.compositesb.2013.12.008

    Article  Google Scholar 

  28. Pradhan KK, Chakraverty S (2013) Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method. Comput Part B 51:175–184. https://doi.org/10.1016/j.compositesb.2013.02.027

    Article  Google Scholar 

  29. Lueschen GGG, Bergman LA, McFarland DM (1996) Green’s functions for uniform Timoshenko beams. J Sound Vib 194(1):93–102. https://doi.org/10.1006/jsvi.1996.0346

    Article  Google Scholar 

  30. Foda MA, Abduljabbar Z (1997) A dynamic Green function formulation for the response of a beam structure to a moving mass. J Sound Vib 210(3):295–306. https://doi.org/10.1006/jsvi.1997.1334

    Article  Google Scholar 

  31. Kukla S, Zamojska I (2007) Frequency analysis of axially loaded stepped beams by Green’s function method. J Sound Vib 300:1034–1041. https://doi.org/10.1016/j.jsv.2006.07.047

    Article  Google Scholar 

  32. Mehri B, Davar A, Rahmani O (2009) Dynamic Green’s function solution of beams under a moving load with different boundary conditions. Sci Iran 16:273–279

    Google Scholar 

  33. Failla G, Santini A (2007) On Euler–Bernoulli discontinuous beam solutions via uniform-beam Green’s functions. Int J Sol Struct 44:7666–7687. https://doi.org/10.1016/j.ijsolstr.2007.05.003

    Article  MATH  Google Scholar 

  34. Szeidl G (1975) The effect of change in length on the natural frequencies and stability of circular beams. Ph.D. thesis, Department of Mechanics, University of Miskolc, Hungary (in Hungarian)

  35. Szeidl G, Kelemen K, Szeidl Á (1998) Natural frequencies of a circular arch—computations by the use of Green functions. Publ Univ Miskolc Ser D Nat Sci Math 38:117–132

    MathSciNet  MATH  Google Scholar 

  36. Kelemen K (2000) Vibrations of circular arches subjected to hydrostatic follower loads—computations by the use of the Green functions. J Comput Appl Mech 1(2):167–178

    MATH  Google Scholar 

  37. Abu-Hilal M (2003) Forced vibration of Euler–Bernoulli beams by means of dynamic Green functions. J Sound Vib 267:191–207. https://doi.org/10.1016/S0022-460X(03)00178-0

    Article  MATH  Google Scholar 

  38. Li XY, Zhao X, Li YH (2014) Green’s functions of the forced vibration of Timoshenko beams with damping effect. J Sound Vib 333(6):1781–1795. https://doi.org/10.1016/j.jsv.2013.11.007

    Article  Google Scholar 

  39. Kiss L, Szeidl G (2015) Vibrations of pinned–pinned heterogeneous circular beams subjected to a radial force at the crown point. Mech Bas Des Struct Mach 43(4):424–449. https://doi.org/10.1080/15397734.2015.1022659

    Article  Google Scholar 

  40. Kiss L, Szeidl G, Vlase S, Gálfi BP, Dani P, Munteanu IR, Ionescu RD, Száva J (2014) Vibrations of fixed–fixed heterogeneous curved beams loaded by a central force at the crown point. Int J Eng Model 27(3–4):85–100

    Google Scholar 

  41. Kiss LP, Szeidl G (2017) Vibrations of pinned–fixed heterogeneous circular beams pre-loaded by a vertical force at the crown point. J Sound Vib 393:92–113. https://doi.org/10.1016/j.jsv.2016.12.032

    Article  Google Scholar 

  42. Wasserman Y (1977) The influence of the behaviour of the load on the frequencies and critical loads of arches with flexibly supported ends. J Sound Vib 54(4):515–526. https://doi.org/10.1016/0022-460X(77)90609-5

    Article  MATH  Google Scholar 

  43. Rajasekaran S (2013) Static, stability and free vibration analysis of arches using a new differential transformation-based arch element. Int J Mech Sci 77:82–97. https://doi.org/10.1016/j.ijmecsci.2013.09.012

    Article  Google Scholar 

  44. Kiss LP (2015) Vibrations and stability of heterogeneous curved beams. Ph.D. thesis, Institute of Applied Mechanics, University of Miskolc, Hungary https://doi.org/10.14750/ME.2016.008

  45. Chidamparam P, Leissa AW (1995) Influence of centerline extensibility on the in-plane free vibrations of loaded circular arches. J Sound Vib 183(5):779–795. https://doi.org/10.1006/jsvi.1995.0286

    Article  MATH  Google Scholar 

  46. Simitses GJ, Hodges DH (2006) Fundamentals of structural stability. Elsevier and Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  47. Kiss LP (2017) Green’s functions for nonhomogenous curved beams with applications to vibration problems. J Comput Appl Mech 12(1):21–43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Kiss.

Additional information

Technical Editor: Kátia Lucchesi Cavalca Dedini.

This research was supported by the National Research, Development and Innovation Office—NKFIH, K115701.

Appendix: The Green function matrix for rotationally restrained circular beams

Appendix: The Green function matrix for rotationally restrained circular beams

1.1 Solutions for the matrices \({{\mathbf {B}}}_i\)

To determine the elements of the unknown matrices \({{\mathbf {B}}}_i\) we have to solve equation system (25). Substituting the functions \({{\mathbf {Y}}}_i\) and the discontinuities \(\overset{2}{P}{}^{-1}_{11}\) and \(\overset{4}{P}{}^{-1}_{22}\) into (25) we get the following linear equations:

$$\begin{aligned}&\left[ \begin{array}{cccccc} \cos \gamma &{} -\sin \gamma &{} -\sin \gamma +\gamma \cos \gamma &{} (1+{{\mathcal {M}}})\gamma &{} -\cos \gamma -\gamma \sin \gamma &{} 1\\ \sin \gamma &{} \cos \gamma &{} \gamma \sin \gamma &{} -{{\mathcal {M}}} &{} \gamma \cos \gamma &{} 0\\ -\sin \gamma &{} -\cos \gamma &{} -\gamma \sin \gamma &{} 1+{{\mathcal {M}}} &{} -\gamma \cos \gamma &{} 0\\ \cos \gamma &{} -\sin \gamma &{} \gamma \cos \gamma +\sin \gamma &{} 0 &{} -\gamma \sin \gamma +\cos \gamma &{} 0\\ -\sin \gamma &{} -\cos \gamma &{} -\gamma \sin \gamma +2\cos \gamma &{} 0 &{} -\gamma \cos \gamma -2\sin \gamma &{} 0\\ -\cos \gamma &{} \sin \gamma &{} -\gamma \cos \gamma -3\sin \gamma &{} 0 &{} \gamma \sin \gamma -3\cos \gamma &{} 0 \end{array} \right] \nonumber \\&\quad \times \left[ \begin{array}{cc} \overset{1}{B}_{11} &{} \overset{1}{B}_{12}\\ \overset{2}{B}_{11} &{} \overset{2}{B}_{12}\\ \overset{3}{B}_{11} &{} \overset{3}{B}_{12}\\ \overset{3}{B}_{21} &{} \overset{3}{B}_{22}\\ \overset{4}{B}_{11} &{} \overset{4}{B}_{12}\\ \overset{4}{B}_{21} &{} \overset{4}{B}_{22} \end{array} \right] =\left[ \begin{array}{cc} 0 &{} 0\\ 0 &{} 0\\ \dfrac{1}{2{{\mathcal {M}}}} &{} 0\\ 0 &{} 0\\ 0 &{} 0\\ 0 &{} -\dfrac{1}{2} \end{array}\right] . \end{aligned}$$
(39)

The closed-form solutions are given below:

$$\begin{aligned} \begin{array}{l} \overset{1}{B}_{11}=\dfrac{1}{2}\sin \gamma -\dfrac{1}{4}\gamma \cos \gamma \\ \overset{2}{B}_{11}=\dfrac{1}{4}\gamma \sin \gamma +\dfrac{1}{2}\cos \gamma \\ \overset{3}{B}_{11}=\dfrac{1}{4}\cos \gamma \\ \overset{3}{B}_{21}=\dfrac{1}{2{{\mathcal {M}}}}\\ \overset{4}{B}_{11}=-\dfrac{1}{4}\sin \gamma \\ \overset{4}{B}_{21}=-\dfrac{1}{2}\left( 1+{{\mathcal {M}}}\right) \dfrac{\gamma }{{{\mathcal {M}}}}\end{array} \qquad {{\text {and}}}\qquad \begin{array}{l} \overset{1}{B}_{12}=-\dfrac{1}{4}\cos \gamma -\dfrac{1}{4}\gamma \sin \gamma \\ \overset{2}{B}_{12}=\dfrac{1}{4}\sin \gamma -\dfrac{1}{4}\gamma \cos \gamma \\ \overset{3}{B}_{12}=\dfrac{1}{4}\sin \gamma \\ \overset{3}{B}_{22}=0\\ \overset{4}{B}_{12}=\dfrac{1}{4}\cos \gamma \\ \overset{4}{B}_{21}=\dfrac{1}{2}. \end{array} \end{aligned}$$
(40)

1.2 Solutions for the matrices \({{\mathbf {A}}}_i\)

Let us introduce the following brief notations:

$$\begin{aligned} {{\mathfrak {a}}} =\overset{1}{B}_{1i},\quad {{\mathfrak {b}}}=\overset{2}{B}_{1i},\quad {{\mathfrak {c}}}=\overset{3}{B} _{1i},\quad {{\mathfrak {d}}}=\overset{3}{B}_{2i},\quad {{\mathfrak {e}}}=\overset{4}{B}_{1i},\quad {{\mathfrak {f}}}=\overset{4}{B}_{2i}. \end{aligned}$$

Utilizing now boundary condition (12) valid for rotationally restrained beams we get the following linear equations from Property 4—from Eq. (27)—to calculate the unknown nonzero elements in the matrices \({{\mathbf {A}}}_i\) (\(i=1,2\)):

$$\begin{aligned}&\left[ \begin{array}{cccccc} \cos \vartheta &{} \sin \vartheta &{} \sin \vartheta -\vartheta \cos \vartheta &{} -({{\mathcal {M}}}+1)\vartheta &{} -\cos \vartheta -\vartheta \sin \vartheta &{} 1\\ \cos \vartheta &{} -\sin \vartheta &{} -\sin \vartheta +\vartheta \cos \vartheta &{} ({{\mathcal {M}}}+1)\vartheta &{} -\cos \vartheta -\vartheta \sin \vartheta &{} 1\\ -\sin \vartheta &{} \cos \vartheta &{} \vartheta \sin \vartheta &{} -{{\mathcal {M}}} &{} -\vartheta \cos \vartheta &{} 0\\ \sin \vartheta &{} \cos \vartheta &{} \vartheta \sin \vartheta &{} -{{\mathcal {M}}} &{} \vartheta \cos \vartheta &{} 0\\ \sin \vartheta -{{\mathcal {K}}}\cos \vartheta &{} -\cos \vartheta -{{\mathcal {K}}}\sin \vartheta &{} \{2\cos \vartheta -\vartheta \sin \vartheta - &{} 0 &{} \{2\sin \vartheta +\vartheta \cos \vartheta - &{} 0 \\ &{} &{} -{{\mathcal {K}}}\left( -\sin \vartheta -\vartheta \cos \vartheta \right) \} &{} -{{\mathcal {K}}}\left( \cos \vartheta -\vartheta \sin \vartheta \right) \} &{} \\ -\sin \vartheta +{{\mathcal {K}}}\cos \vartheta &{} -\cos \vartheta -{{\mathcal {K}}}\sin \vartheta &{} \{2\cos \vartheta -\vartheta \sin \vartheta + &{} 0 &{} \{-2\sin \vartheta -\vartheta \cos \vartheta &{} 0 \\ &{} &{} +{{\mathcal {K}}}\left( \sin \vartheta +\vartheta \cos \vartheta \right) \} &{} &{} +{{\mathcal {K}}}\left( \cos \vartheta -\vartheta \sin \vartheta \right) \} &{} \\ \end{array}\right] \nonumber \\&\quad \times \left[ \begin{array}{c} \overset{1}{A}_{1i}\\ \overset{2}{A}_{1i}\\ \overset{3}{A}_{1i}\\ \overset{3}{A}_{2i}\\ \overset{4}{A}_{1i}\\ \overset{4}{A}_{2i} \end{array}\right] =\left[ \begin{array}{c} -{{\mathfrak {a}}}\cos \vartheta -{{\mathfrak {b}}}\sin \vartheta -{{\mathfrak {c}}}\left( \sin \vartheta -\vartheta \cos \vartheta \right) +{{\mathfrak {d}}}({{\mathcal {M}}}+1)\vartheta +{{\mathfrak {e}}}\left( \cos \vartheta +\vartheta \sin \vartheta \right) -{{\mathfrak {f}}}\\ {{\mathfrak {a}}}\cos \vartheta -{{\mathfrak {b}}}\sin \vartheta +{{\mathfrak {c}}}\left( -\sin \vartheta +\vartheta \cos \vartheta \right) +{{\mathfrak {d}}}({{\mathcal {M}}} +1)\vartheta -{{\mathfrak {e}}}\left( \cos \vartheta +\vartheta \sin \vartheta \right) +{{\mathfrak {f}}}\\ {{\mathfrak {a}}}\sin \vartheta -{{\mathfrak {b}}}\cos \vartheta -{{\mathfrak {c}}} \vartheta \sin \vartheta +{{\mathfrak {d}}}{{\mathcal {M}}}+{{\mathfrak {e}}} \vartheta \cos \vartheta \\ {{\mathfrak {a}}}\sin \vartheta +{{\mathfrak {b}}}\cos \vartheta +{{\mathfrak {c}}} \vartheta \sin \vartheta -{{\mathfrak {d}}}{{\mathcal {M}}}+{{\mathfrak {e}}} \vartheta \cos \vartheta \\ {{\mathfrak {a}}}\left( {{\mathcal {K}}}\cos \vartheta -\sin \vartheta \right) + {{\mathfrak {b}}}\left( \cos \vartheta +{{\mathcal {K}}}\sin \vartheta \right) + {{\mathfrak {c}}}\left[ 2\cos \vartheta -\vartheta \sin \vartheta - {{\mathcal {K}}}\left( \sin \vartheta +\vartheta \cos \vartheta \right) \right] \\ +{{\mathfrak {e}}} \left[ 2\sin \vartheta +\vartheta \cos \vartheta + {{\mathcal {K}}}\left( \cos \vartheta -\vartheta \sin \vartheta \right) \right] \\ {{\mathfrak {a}}}\left( {{\mathcal {K}}}\cos \vartheta -\sin \vartheta \right) +{{\mathfrak {b}}}\left( -\cos \vartheta -{{\mathcal {K}}}\sin \vartheta \right) +{{\mathfrak {c}}}\left[ 2\cos \vartheta -\vartheta \sin \vartheta +{{\mathcal {K}}}\left( \sin \vartheta +\vartheta \cos \vartheta \right) \right] \\ -{{\mathfrak {e}}}\left[ 2\sin \vartheta +\vartheta \cos \vartheta -{{\mathcal {K}}} \left( \cos \vartheta -\vartheta \sin \vartheta \right) \right] \\ \end{array}\right] \end{aligned}$$

With

$$\begin{aligned} D_{1}= & {} 2\sin ^{2}\vartheta +{{\mathcal {K}}}\left( \vartheta -\sin \vartheta \cos \vartheta \right) \nonumber \\ D_{2}= & {} {{\mathcal {M}}}\vartheta +2\left( 1+{{\mathcal {M}}}\right) \vartheta \cos ^{2}\vartheta -3{{\mathcal {M}}}\sin \vartheta \cos \vartheta \nonumber \\&+{{\mathcal {K}}}\left[ {{\mathcal {M}}}\left( \vartheta \cos \vartheta -2\sin \vartheta \right) \sin \vartheta +\left( 1+{{\mathcal {M}}}\right) \vartheta ^{2}+\vartheta \sin \vartheta \cos \vartheta \right] \end{aligned}$$
(41)

the solutions sought are

$$\begin{aligned} \overset{1}{A}_{1i}= & {} \frac{2{{\mathfrak {b}}}\sin \vartheta \cos \vartheta +2{{\mathfrak {c}}}\vartheta -2{{\mathfrak {d}}}{{\mathcal {M}}} \left( \sin \vartheta -\vartheta \cos \vartheta \right) +{{\mathcal {K}}}\left[ {{\mathfrak {c}}}\vartheta ^{2} -{{\mathfrak {b}}} \cos ^{2}\vartheta +{{\mathfrak {d}}}{{\mathcal {M}}}\left( \cos \vartheta -\vartheta \sin \vartheta \right) \right] }{D_{1}}, \end{aligned}$$
(42a)
$$\begin{aligned} \overset{2}{A}_{1i}= & {} \frac{1}{D_{2}}\left\{ {{\mathfrak {a}}} \left[ 2(1+{{\mathcal {M}}})\vartheta \sin \vartheta \cos \vartheta +{{\mathcal {M}}}\left( 2\cos ^{2}\vartheta -\sin ^{2}\vartheta \right) \right] \right. \nonumber \\&+{{\mathfrak {e}}}\left( 3{{\mathcal {M}}}\vartheta ^{2}+2\vartheta ^{2} -2{{\mathcal {M}}}\right) -{{\mathfrak {f}}} {{\mathcal {M}}} \left( \vartheta \sin \vartheta -2\cos \vartheta \right) \nonumber \\&+\left. {{\mathcal {K}}}\left[ {{\mathfrak {a}}}\left( \left[ 1+{{\mathcal {M}}}\right] \vartheta \sin ^{2}\vartheta +2{{\mathcal {M}}}\sin \vartheta \cos \vartheta \right) +{{\mathfrak {e}}} \vartheta \left( -2{{\mathcal {M}}}+\left[ 1+{{\mathcal {M}}}\right] \vartheta ^{2}\right) \right. \right. \nonumber \\&\left. \left. +{{\mathfrak {f}}}{{\mathcal {M}}}\left( \vartheta \cos \vartheta +\sin \vartheta \right) \right] \right\} , \end{aligned}$$
(42b)
$$\begin{aligned} \overset{3}{A}_{1i}= & {} \frac{1}{D_{2}}\left\{ {{\mathfrak {a}}}{{\mathcal {M}}} -{{\mathfrak {e}}}\left[ {{\mathcal {M}}}\cos ^{2}\vartheta -2{{\mathcal {M}}} \sin ^{2}\vartheta +2\vartheta (1+{{\mathcal {M}}})\sin \vartheta \cos \vartheta \right] \right. \nonumber \\&\left. +{{\mathfrak {f}}}{{\mathcal {M}}}\cos \vartheta +{{\mathcal {K}}} \left[ {{\mathfrak {a}}}\left( 1+{{\mathcal {M}}}\right) \vartheta +{{\mathfrak {e}}}\left( 1+{{\mathcal {M}}}\right) \vartheta \cos ^{2}\vartheta -2{{\mathfrak {e}}}{{\mathcal {M}}}\sin \vartheta \cos \vartheta +{{\mathfrak {f}}}{{\mathcal {M}}} \sin \vartheta \right] \right\} , \end{aligned}$$
(42c)
$$\begin{aligned} \overset{3}{A}_{2i}= & {} \frac{1}{D_{2}}\left\{ 2{{\mathfrak {a}}}\cos \vartheta +2{{\mathfrak {e}}}\left( \vartheta \sin \vartheta -\cos \vartheta \right) \right. \nonumber \\&\left. +2{{\mathfrak {f}}}\cos ^{2}\vartheta +{{\mathcal {K}}}\left[ 2{{\mathfrak {a}}} \sin \vartheta -2{{\mathfrak {e}}}\vartheta \cos \vartheta +{{\mathfrak {f}}}\left( \vartheta +\sin \vartheta \cos \vartheta \right) \right] \right\} , \end{aligned}$$
(42d)
$$\begin{aligned} \overset{4}{A}_{1i}= & {} \frac{-2{{\mathfrak {c}}}\cos \vartheta \sin \vartheta +{{\mathfrak {d}}}{{\mathcal {M}}}\sin \vartheta +{{\mathcal {K}}}\left( {{\mathfrak {b}}} -{{\mathfrak {c}}}\sin ^{2}\vartheta -{{\mathfrak {d}}}{{\mathcal {M}}} \cos \vartheta \right) }{D_{1}}, \end{aligned}$$
(42e)
$$\begin{aligned} \overset{4}{A}_{2i}= & {} \frac{1}{D_{1}}\left\{ -2{{\mathfrak {b}}}\sin \vartheta -2{{\mathfrak {c}}}\left( \sin \vartheta +\vartheta \cos \vartheta \right) \right. \nonumber \\&+{{\mathfrak {d}}}\left[ {{\mathcal {M}}}\vartheta \cos ^{2}\vartheta +3{{\mathcal {M}}}\sin \vartheta \left( \cos \vartheta +\vartheta \sin \vartheta \right) +2\vartheta \sin ^{2}\vartheta \right] \nonumber \\&\left. +{{\mathcal {K}}}\left[ 2{{\mathfrak {b}}}\cos \vartheta -2{{\mathfrak {c}}} \vartheta \sin \vartheta +{{\mathfrak {d}}}\vartheta ^{2} \left( 1+{{\mathcal {M}}}\right) -{{\mathfrak {d}}}\vartheta \left( 1+{{\mathcal {M}}}\right) \sin \vartheta \cos \vartheta -2{{\mathfrak {d}}}{{\mathcal {M}}}\cos ^{2}\vartheta \right] \right\} . \end{aligned}$$
(42f)

It should be mentioned that if (\({{\mathcal {K}}}=0\)) [\({{\mathcal {K\rightarrow \infty }}}\)] in \({{\mathbf {A}}}_i\), these solutions coincide with those valid for (pinned-pinned) [fixed-fixed] beams [47].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiss, L.P., Szeidl, G. Free vibrations of rotationally restrained nonhomogeneous circular beams by means of the Green function. J Braz. Soc. Mech. Sci. Eng. 40, 342 (2018). https://doi.org/10.1007/s40430-018-1262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1262-x

Keywords

Navigation