Skip to main content
Log in

Abstract

A dust cloud autoignition in a hot gas is investigated based on the thermal explosion theory. A mathematical model that contains the energy equations for both particle and gas is used. The critical ignition conditions using the different forms of criticality in different planes of the solution have been presented analytically for both steady-state and transient conditions. The convection and radiation heat losses are used in this work. The critical conditions have been presented in mathematical expressions. A direct integration of the governing equations of the problem using the Runga–Kutta method of a high order for different planes is presented. The analysis showed that the critical ignition temperatures and ignition time values of the convection and radiation heat loss case are lower than those obtained for the case of convection heat loss only. The effect of ambient temperature, gas temperature, dimensionless characteristic parameters, and initial particle temperature on the critical ignition conditions is investigated. It was found that the ignition delay time, τ*, increases with decreasing gas temperature and increasing ambient temperature, θa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A n :

Frequency factor (m/s)

c p :

Specific heat (J/kg K)

d :

Diameter (m)

E :

Activation energy (J/kg)

h :

Heat transfer coefficient (W/m2 K)

k :

Thermal conductivity (W/m K)

k c :

Arrhenius rate constant (s−1)

m :

Mass (kg)

N :

Number of particles in the cloud

Q :

Heat of the reaction (J/kg)

R :

Universal gas constant (J/kg K)

S :

Surface area (m2)

T :

Temperature (K)

a:

Ambient temperature

c:

Cloud or vessel

cs:

Cloud surrounding

g:

Gas

p:

Particle

pg:

Particle–gas

v:

Vessel

ρ :

Density (kg/m3)

θ :

Dimensionless temperature = RT/E

α :

Cloud–particle density = heat transfer coefficient ratio × cloud–particle surface area ratio = \(h_{\text{cs}} S_{\text{c}} /Nh_{\text{pg}} S_{\text{p}}\)

γ :

Modified dimensionless Semenov number or reaction exothermicity for the convection heat loss case = \(\rho_{\text{g}} A_{\text{n}} QY_{\text{o}} R/Nh_{\text{pg}} E\)

γ r :

Modified dimensionless Semenov number or reaction exothermicity for the radiation heat loss case = \(\rho_{\text{g }} A_{\text{n}} QY_{\text{o}} R^{4} S_{\text{p}} / \sigma \varepsilon S_{\text{v}} h_{\text{pg}} E^{4}\)

τ:

Dimensionless time = \(\rho_{\text{g}} A_{\text{n}} S_{\text{p}} QY_{\text{o}} R/m_{\text{p}} c_{\text{pp}} E\)

σ:

Stefan–Boltzmann constant = 5.67 × 10 −8 W m−2 K−4

ε :

Emissivity

References

  1. Morozzo C (1957) Account of a violent explosion in a flour warehouse in Turin, December 14th 1785. The repertory of arts and Manufactures. Report of important dust explosions, National Fire Protection Association, Boston

  2. Gao C, Li H, Su D (2010) Explosion characteristics of coal dust in a sealed vessel. Combust Explos Shock Waves 30:164

    Google Scholar 

  3. Feng P, Chao M, Weiguo C (2011) Research on risk aspects of corn starch dust explosion. China Saf Sci J 21:46

    Google Scholar 

  4. Guoning R, Wanghua C, Qing F (2009) Experimental study on dust explosion of expanded ammonium nitrate explosive. Explos Mater 38:11

    Google Scholar 

  5. Eckhoff RK (2009) Dust explosions in the process industries, 3rd edn. Elsevier, New York, pp 20–21

    Google Scholar 

  6. Essenhigh RH, Thring MW (1958) Conference on science in the use of coal, sheffield, paper 29

  7. Bidabadi M, Dizaji FF, Dizaji HB, Ghahsareh MS (2014) Investigation of effective parameters on flame instability in combustion of organic dust. J Cent South Univ 21:326–337

    Article  Google Scholar 

  8. Ajrash MJ, Zanganeh J, Moghtaderi B (2016) Methane-coal dust hybrid fuel explosion properties in a large scale cylindrical explosion chamber. J Loss Prev Process Ind 40:317–328

    Article  Google Scholar 

  9. Quanming H, Xiaoming L (2011) Discussion on coal mining accidents and explosions. Coal 20:43

    Google Scholar 

  10. Li Q, Zhai C, Wu H (2011) Investigation on coal dust explosion characteristics using 20 L explosion sphere vessels. J China Coal Soc 36:119

    Google Scholar 

  11. Tao L, Xindi L (2004) Study on combustion efficiency of ash content of coal for BF at bagang group. Xinjiang Iron Steel 26:12

    Google Scholar 

  12. Cassel HM, Liebman L (1959) The cooperative mechanism in the ignition of dust dispersions. Combust Flame 3:467–475

    Article  Google Scholar 

  13. Krishna CR, Berlad AL (1980) A model for dust cloud autoignition. Combust Flame 37:207–210

    Article  Google Scholar 

  14. Zhang D, Wall TF (1993) An analysis of the ignition of coal dust clouds. Combust Flame 92(4):475–480

    Article  Google Scholar 

  15. Bidabadi M, Rahbari A, Alizadehheidari M (2011) The analytical investigation of the premixed combustion in cylindrical micro-combustor. Proc IME C J Mech Eng Sci 225(4):931–938

    Article  Google Scholar 

  16. Bidabadi M, Haghiri A, Rahbari A (2010) The effect of Lewis and Damkohler numbers on the flame propagation through micro-organic dust particles. Int J Therm Sci 49(3):534–542

    Article  Google Scholar 

  17. Bidabadi M, Montazerinejad S, Fanaee A (2010) An analytical study of radiation effect on the ignition of magnesium particles using perturbation theory. Lat Am Appl Res 40:351–357

    Google Scholar 

  18. Bidabadi M, Moallemi N, Shabani A et al (2010) Analysis of size distribution and ignition temperature effects on flame speeds in aluminum dust clouds. Proc IME G J Aerosp Eng 224(1):113–119

    Article  Google Scholar 

  19. Bidabadi M, Azimi M, Rahbari A (2010) The effects of radiation and particle size on the pyrolysis of biomass particles. Proc IME C J Mech Eng Sci 224(3):675–682

    Article  Google Scholar 

  20. Bidabadi M, Shahrbabaki Shabani A, Jadidi M et al (2010) An analytical study of radiation effects on the premixed laminar flames of aluminium dust clouds. Proc IME C J Mech Eng Sci 5(12):2194–2202

    Google Scholar 

  21. Bidabadi M, Barari G, Azimi M et al (2009) Theoretical study of a perfectly volatile particle triple flame. Int J Recent Trends Eng 1(5):26–29

    Google Scholar 

  22. Bidabadi M, Rahbari A (2009) Novel analytical model for predicting the combustion characteristics of premixed flame propagation in lycopodium dust particles. J Mech Sci Technol 23(9):2417–2423

    Article  Google Scholar 

  23. Bidabadi M, Rahbari A (2009) Modeling combustion of lycopodium particles by considering the temperature difference between the gas and the particles. Combust Explos Shock Waves 45(3):278–285

    Article  Google Scholar 

  24. Bidabadi M, Fereidooni J, Tavakoli R et al (2011) Premixed filtration combustion of micron and sub-micron particles in inert porous media: a theoretical analysis. Korean J Chem Eng 28(2):461–469

    Article  Google Scholar 

  25. Haghiri A, Bidabadi M (2010) Modeling of laminar flame propagation through organic dust cloud with thermal radiation effect. Int J Therm Sci 49(8):1446–1456

    Article  Google Scholar 

  26. Semenov NN (1959) Some problems of chemical kinetics and reactivity, vol. II. Peragmon Press, Oxford

    Google Scholar 

  27. Shouman Ahmad R, El-Sayed S (1992) Accounting for reactant consumption in the thermal explosion problem. Part I: mathematical foundation, accounting for reactant consumption. Combust Flame 88:321–344

    Article  Google Scholar 

  28. Shouman AR, El-Sayed S (1997) Accounting for reactant consumption in the thermal explosion problem part II: a direct solution with application to the Frank-Kamenetskii problem. Combust Flame 108:361–386

    Article  Google Scholar 

  29. Shouman AR, El-Syaed SA (1998) Accounting for reactant consumption in the thermal explosion theory III–criticality conditions for the Arrhenius problem. Combust Flame 113:212–223

    Article  Google Scholar 

  30. Shouman AR, El-Syaed SA (1999) Accounting for reactant consumption in the thermal explosion problem. Part IV. Numerical solution of the Arrhenius problem. Combust Flame 117:422–428

    Article  Google Scholar 

  31. Adler J, Enig JW (1964) The critical conditions in the thermal explosion theory with reactant consumption. Combust Flame 8:10–97

    Google Scholar 

  32. El-Sayed SA (2004) Adiabatic thermal explosion of a gas solid mixture. Combust Sci Technol 176:237–256

    Article  Google Scholar 

  33. El-Sayed SA (2008) Critical and transition conditions for ignition of a carbon particles dust cloud in an adiabatic confined vessel. Combust Sci Technol 180:1572–1587

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad A. El-Sayed.

Additional information

Technical Editor: Fernando Marcelo Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sayed, S.A. Self-ignition of dust cloud in a hot gas. J Braz. Soc. Mech. Sci. Eng. 40, 285 (2018). https://doi.org/10.1007/s40430-018-1200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1200-y

Keywords

Navigation