Skip to main content
Log in

3D analysis of the combined effects of thermal buoyancy and viscous dissipation on the mixed convection of Bingham plastic fluid in a rectangular channel

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The present study investigates numerically the three-dimensional mixed convection flow behavior of a Bingham plastic fluid within a rectangular horizontal duct. The latter has a square cross section, which is symmetrically heated at uniform wall temperature. The effect of the viscous dissipation on the hydrodynamic and thermal fields is taking into account through the energy equation. The finite volume method is used to discretize the governing equations, and the resulting algebraic system is solved iteratively by TDMA algorithm. The simulations are conducted for different values of the Grashof number (104 ≼ | Gr | ≼ 5 × 105), the Brinkman number (0 ≼ | Br | ≼ 10), and the Bingham number (10 ≼ | Bn | ≼ 20), for Re = 100 and Pr = 50. The results are analyzed through the distribution of the Nusselt number, the temperature and velocity profiles as well as unyielded plugs. For Br = 0, the Grashof number variation affects greatly the heat transfer and the fluid flow, in particular at the duct intermediate region. However, for Br ≠ 0, the Grashof number variation effect is noticeable in both the central and the fully developed regions. Moreover, the combination of Grashof, Brinkman, and Bingham numbers constitutes pertinent parameters control of the unyielded plugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a :

Width of ducts (m)

b :

Height of ducts (m)

Bn :

Bingham number

Br :

Brinkman number

D h :

Equivalent hydraulic diameter (m)

fRe :

Friction factor

g :

Gravitational acceleration (m s−2)

k :

Thermal conductivity (W m−1 K−1)

Gr :

Grashof number

Gz :

Greatz number

m :

Stress growth exponent (s)

Nu :

Nusselt number

P :

Cross-sectional mean pressure (Pa)

P * :

Dimensionless cross mean pressure

Pr :

Prandtl number

Ra :

Rayleigh number

Re :

Reynolds number

T :

Temperature (K)

T 0 :

Inlet fluid temperature (K)

u :

Longitudinal coordinate velocity (m s−1)

U :

Dimensionless longitudinal velocity

v :

Transverse coordinate velocity (m s−1)

V :

Dimensionless transverse velocity

w :

Transverse coordinate velocity (m s−1)

W :

Dimensionless transverse velocity

x :

Longitudinal coordinate (m)

X :

Dimensionless longitudinal coordinate

y :

Transverse coordinate (m)

Y :

Dimensionless transverse coordinate

z :

Transverse coordinate (m)

Z :

Dimensionless transverse coordinate

α :

Thermal diffusivity (m2 s−1)

β :

Coefficient of thermal expansion (K−1)

ϕ :

Dimensionless temperature

ρ :

Density (kg m−3)

References

  1. James P, Hartnet T, Milivoje K (1989) Heat transfer to Newtonian and non-Newtonian fluids in rectangular ducts. Adv Heat Transf 19:247–356

    Article  Google Scholar 

  2. Bejan A (1995) Convection heat transfer, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  3. Sacadura JF (1993) Initiation aux transferts thermiques. Technique et documentation, INSA de Lyon

  4. Soares EJ, Naccache MF, Souza Mendes PR (2003) Heat transfer to viscoplastic materials flowing axially through concentric annuli. Int J Heat Fluid Flow 24:762–773

    Article  Google Scholar 

  5. Min T, Choi HG, Yoo JY, Choi H (1997) Laminar convective heat transfer of a Bingham plastic in a circular pipe II. Numerical approach hydrodynamically developing flow and simultaneously developing flow. Int J Heat Mass Transf 40:3689–3701

    Article  MATH  Google Scholar 

  6. Vradis GC, Dougher J, Kumar S (1993) Entrance pipe flow and heat transfer for a Bingham plastic. J Heat Mass Transf 36:543–552

    Article  Google Scholar 

  7. Brinkman HC (1951) Heat effects in capillary flow I. Appl Sci Res A2:120–124

    Article  Google Scholar 

  8. Barletta A (1997) Fully developed laminar forced convection in circular ducts for power-law fluids with viscous dissipation. Int J Heat Mass Transf 40(1):15–26

    Article  MathSciNet  MATH  Google Scholar 

  9. Barletta A, Rossi di Schio E (1999) Effects of viscous dissipation on laminar forced convection with axially periodic wall. Int J Heat Mass Transf 35:9–16

    Article  Google Scholar 

  10. Zanchini E (1997) Effect of viscous dissipation on the asymptotic behavior of laminar forced convection in circular tubes. Int J Heat Mass Transf 40:169–178

    Article  MATH  Google Scholar 

  11. Barletta A (1998) Laminar mixed convection with viscous dissipation in a vertical channel. Int. J Heat Mass Transf 44:4267–4275

    Article  MATH  Google Scholar 

  12. Barletta A, Zanchini E (1997) Forced convection in the thermal entrance region of a circular duct with slug flow and viscous dissipation. Int J Heat Mass Transf 40(5):1181–1190

    Article  MATH  Google Scholar 

  13. Orhan A (2005) Effects of viscous dissipation on the heat transfer in forced pipe flow. Part 1: both hydrodynamically and thermally fully developed flow. Energy Convers Manag 46:757–769

    Article  Google Scholar 

  14. Aydin O (2005) Effects of viscous dissipation on the heat transfer in a forced pipe flow. Part 1: both hydrodynamically and thermally developed flow. Energy Convers Manag 46(757):69

    Google Scholar 

  15. Aydin O (2005) Effects of viscous dissipation on the heat transfer in a forced pipe flow. Part 2: thermally developing flow. Energy Convers Manag 46:3091–3102

    Article  Google Scholar 

  16. Boudiaf A, Danane F, Benkahla YK, Labsi N, Boutra A (2017) Heat transfer convection of a power law fluid flow within a parallel plate channel provided with two generating obstacles. Mech Ind. https://doi.org/10.1051/meca/2017003

    Google Scholar 

  17. Khalil MK, Abdalla MA, Ioan P (2007) Numerical simulation of unsteady mixed convection in a driven cavity using an externally excited sliding lid. Eur J Mech B Fluids 26:669–687

    Article  MathSciNet  MATH  Google Scholar 

  18. Lamsaadi M, Naïmi M, Hasnaoui M (2006) Natural convection heat transfer in shallow horizontal rectangular enclosures uniformly heated from the side and filled with non-Newtonian power law fluids. Energy Convers Manag 47:2535–2551

    Article  Google Scholar 

  19. Beaudoin JF, Cadot O, Aider JL, Wesfreid JE (2004) Three-dimensional stationary flow over a backward-facing step. Eur J Mech B Fluids 23(147):155

    MATH  Google Scholar 

  20. Sajadifar SA, Karimipour A, Toghraie D (2016) Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions. Eur J Mech B Fluids. https://doi.org/10.1016/j.euromechflu.2016.09.014

    Google Scholar 

  21. Labsi N, Benkahla YK (2016) Herschel–Bulkley fluid flow within a pipe by taking into account viscous dissipation. Mech Ind 17(3):304. https://doi.org/10.1051/meca/2015063

    Article  Google Scholar 

  22. Labsi N, Benkahla YK, Feddaoui M, Boutra A (2015) Viscous dissipation effect on the flow of a thermodependent Herschel–Bulkley fluid. Therm Sci J 19(5):1553–1564

    Article  Google Scholar 

  23. Yan WM (1996) Combined buoyancy effects of thermal and mass diffusion on laminar forced convection in horizontal rectangular ducts. Int J Heat Mass Transf 39(7):1479–1488

    Article  MATH  Google Scholar 

  24. Chiu HC, Jang JH, Yan WM (2007) Mixed convection heat transfer in horizontal rectangular ducts with radiation effects. Int J Heat Mass Transf 50:2874–2882

    Article  MATH  Google Scholar 

  25. Yan WM (1995) Transport phenomena of developing laminar mixed convection heat and mass transfer in inclined rectangular ducts. Int J Hear Mass Transf 38(15):2905–2914

    Article  MATH  Google Scholar 

  26. Chiu HC, Jang JH, Yan WM (2008) Mixed convection heat transfer in inclined rectangular ducts with radiation effects. Int J Heat Mass Transf 51:1085–1094

    Article  MATH  Google Scholar 

  27. Lee KT, Tsai HL, Yan WM (1997) Mixed convection heat and mass transfer in vertical rectangular ducts. Int J Heat Mass Transf 40(7):1621–1631

    Article  MATH  Google Scholar 

  28. Hooman K, Haji-Sheikh A (2007) Analysis of heat transfer and entropy generation for a thermally developing Brinkman–Brinkman forced convection problem in a rectangular duct with isoflux walls. Int J Heat Mass Transf 50:4180–4194

    Article  MATH  Google Scholar 

  29. Sayed-Ahmed ME (2000) Numerical solution of power law fluids flow and heat transfer with a magnetic field in a rectangular duct. Int Commun Heat Mass Transf 27(7):1013–1024

    Article  Google Scholar 

  30. Sayed-Ahmed ME (2006) Laminar heat transfer for thermally developing flow of a Herschel–Bulkley fluid in a square duct. Int Commun Heat Mass Transf 33:1165–1176

    Article  Google Scholar 

  31. Labsi N, Benkahla YK, Boutra A, Ammouri A (2013) Heat and flow properties of a temperature dependent viscoplastic fluid including viscous dissipation. J Food Process Eng 36:450–461

    Article  Google Scholar 

  32. Mitsoulis E (2004) On creeping drag flow of a viscoplastic fluid past a circular cylinder: wall effects. Chem Eng Sci 59:789–800

    Article  Google Scholar 

  33. Papanastasiou TC (1987) Flow of materials with yield. J Rheol 31:385–404

    Article  MATH  Google Scholar 

  34. Mitsoulis E, Galazoulas S (2009) Simulation of viscoplastic flow past cylinders in tubes. J Non Newton Fluid Mech 158:132–141

    Article  MATH  Google Scholar 

  35. Mitsoulis E, Zisis Th (2001) Flow of Bingham plastics in a lid-driven square cavity. J Non Newton Fluid Mech 101:173–180

    Article  MATH  Google Scholar 

  36. Ouyahia SE, Benkahla YK, Berabou W, Boudiaf A (2017) Numerical study of the flow in a square cavity filled with Carbopol-TiO2 nanofluid. Powder Technol 311. http://dx.doi.org/10.1016/j.powtec.2017.01.026

  37. Ragueb H, Mansouri K (2013) A numerical study of viscous dissipation effect on non-Newtonian fluid flow inside elliptical duct. Energy Convers Manag 68:124–132

    Article  Google Scholar 

  38. Patankar SV (1980) Numerical heat transfer and fluid flow. McGraw-Hill, New York

    MATH  Google Scholar 

  39. Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics (the finite volume method). Longman Scientific and Technical, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fetta Danane.

Additional information

Technical Editor: Francis H. R. Franca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danane, F., Boudiaf, A., Boutra, A. et al. 3D analysis of the combined effects of thermal buoyancy and viscous dissipation on the mixed convection of Bingham plastic fluid in a rectangular channel. J Braz. Soc. Mech. Sci. Eng. 40, 126 (2018). https://doi.org/10.1007/s40430-018-1048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1048-1

Keywords

Navigation