Skip to main content
Log in

On nonlinear dynamics behavior of an electro-mechanical pendulum excited by a nonideal motor and a chaos control taking into account parametric errors

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This study analyzes a nonlinear system with a crank–shaft–slider mechanism linked to a pendulum. The crank is powered by a DC motor that moves horizontally the pendulum pivot. The speed of the motor is influenced by the pendulum dynamics, reason for calling the system as nonideal. In literature, the vibration of the pendulum support by a crank–shaft–slider is generally considered as harmonic what neglects the real complexity of the mechanism. It is also common, for the crank speed or the excitation frequency to be considered constant, so a unique degree-of-freedom can take place. The novelty in this research is the analysis of the feedback effect of the pendulum over the crank speed and the complexity of crank–slider mechanism without approaching to a harmonic motion. Different types of motion occur as oscillations, rotations, and chaos. Results with different initial conditions are worked out and basins of attractions plotted. Chaos was obtained when small variations of parameters are made. The methods of analysis include phase portraits, time histories, bifurcations diagrams, and basins of attraction. The verification of chaotic phenomena is performed through the 0–1 test. By the end, the feedback control is applied using the method of Tereshko by altering the energy of the chaotic system, leading the pendulum to a limit cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

a :

Length of the crank rod

b :

Length of the shaft

\(\epsilon\) :

a over b length ratio

m :

Mass of the pendulum

t :

Time

l :

Length of the pendulum

\(\varphi\) :

Angle between b bar and horizontal axes

\(\theta\) :

Angle of the crank rod

\(\alpha\) :

Angle of the pendulum

\(\tau\) :

Dimensionless time

\(\omega\) :

Dimensionless parameter for crank speed

\(\omega_{0}\) :

Natural frequency of the pendulum

x:

Horizontal position of the bob in the extreme of the pendulum

y:

Vertical position of the bob in the extreme of the pendulum

F:

Dimensionless parameter relating the angle \(\theta\) and \(\varphi\)

T:

Kinetic energy of the system

\(V_{p}\) :

Potential energy of the pendulum

\(L\) :

Lagrangian function

\(Q^{\text{NC}}\) :

Nonconservative generalized force of a coordinate

References

  1. Boeing G (2016) Visual analysis of nonlinear dynamical systems: chaos, fractals, self-similarity and the limits of prediction. Systems 4(4):37. https://doi.org/10.3390/systems4040037

    Article  Google Scholar 

  2. Leven RW, Koch BP (1981) Chaotic behavior of a parametrically excited damped pendulum. Phys Lett A 86(2):71–74. https://doi.org/10.1016/0375-9601(81)90167-5

    Article  Google Scholar 

  3. Xu X, Wiercigroth M, Cartmell MP (2005) Rotating orbits of parametrically-excited pendulum. Chaos Solitons Fractals 23:1537–1548. https://doi.org/10.1016/j.chaos.2004.06.053

    Article  MATH  Google Scholar 

  4. Avanço RH, Navarro HA, Brasil RMLRF, Balthazar JM, Bueno AM, Tusset AM (2015) Statements on nonlinear dynamics behavior of a pendulum, excited by a crank–shaft–slider mechanism. Meccanica. https://doi.org/10.1007/s11012-015-0310-1

    MATH  Google Scholar 

  5. Krasnopolskaya TS, Shvets AY (1990) Chaotic interactions in a pendulum-energy source system. Int Appl Mech Engl Tr 26(5):500–504. https://doi.org/10.1007/bf00887270

    MATH  Google Scholar 

  6. Kononenko VO (1969) Vibrating systems with a limited power-supply. Ilife, London

    Google Scholar 

  7. Souza SLT, Caldas IL, Viana RL, Balthazar JM, Brasil RMLRF (2005) Basins of Attraction changes by amplitude constraining of oscillators with limited power supply. Chaos Solitons Fractals 26:1211–1220. https://doi.org/10.1016/j.chaos.2005.02.039

    Article  MATH  Google Scholar 

  8. Balthazar JM, Mook DT, Weber HI, Brasil RMLRF, Fenili A, Belato D, Felix JLP (2003) An overview on non-ideal vibrations. Meccanica 38(6):613–621. https://doi.org/10.1023/A:1025877308510

    Article  MATH  Google Scholar 

  9. Gonçalves PJP, Silveira M, Petrocino EA, Balthazar JM (2015) Double resonance capture of a two-degree-of-freedom oscillator coupled to a non-ideal motor. Meccanica. https://doi.org/10.1007/s11012-015-0349-z

    Google Scholar 

  10. Balthazar JM, Bassinello DG, Tusset AM, Bueno AM, Pontes BR (2014) Nonlinear control in an electromechanical transducer with chaotic behavior. Meccanica 49(8):1859–1867. https://doi.org/10.1007/s11012-014-9910-4

    MathSciNet  MATH  Google Scholar 

  11. Dantas MJH, Balthazar JM (2004) On local analysis of oscillations of a non-ideal and non-linear mechanical model. Meccanica 39(4):313–330. https://doi.org/10.1023/B:MECC.0000029362.77515.b1

    Article  MathSciNet  MATH  Google Scholar 

  12. Belato D, Weber HI, Balthazar JM (2002) Escape in a nonideal electro-mechanical system. J Braz Soc Mech Sci 24(4): 335–340. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-73862002000400014&lng=en&nrm=iso [cited 18 Jan 2017]. ISSN 0100-7386. http://dx.doi.org/10.1590/S0100-73862002000400014

  13. Belato D, Weber HI, Balthazar JM, Mook DT (2001) Chaotic vibrations of a nonideal electro-mechanical system. Int J Solids Struct. https://doi.org/10.1016/S0020-7683(00)00130-X

    MATH  Google Scholar 

  14. Dantas MJH, Balthazar JM (2003) On the appearance of a Hopf bifurcation in a non-ideal mechanical problem. Mech Res Commun 30:493–503. https://doi.org/10.1016/S0093-6413(03)00041-7

    Article  MathSciNet  MATH  Google Scholar 

  15. Dantas MH, Balthazar JM (2006) A comment on a non-ideal centrifugal vibrator machine behavior with soft and hard springs. Int J Bifurc Chaos 16:1083–1088. https://doi.org/10.1142/S0218127406015349

    Article  MATH  Google Scholar 

  16. Dimentberg MF, McGovern L, Norton RL, Chapdelaine J, Harrison R (1997) Dynamics of an unbalanced shaft interacting with a limited power supply. Nonlinear Dyn 13(2):171–187. https://doi.org/10.1023/A:1008205012232

    Article  MATH  Google Scholar 

  17. Dantas MJH, Balthazar JM (2007) On the existence and stability of periodic orbits in non ideal problems: general results. Z Angew Math Phys 58:940. https://doi.org/10.1007/s00033-006-5116-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Tusset AM, Bueno AM, Santos JPM, Tsuchida M, Balthazar JM (2016) A non-ideally excited pendulum controlled by SDRE technique. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-016-0517-7

    Google Scholar 

  19. Kecik, K (2014) Energy harvesting of an autoparametric pendulum system. In: 2014 16th International Conference on Mechatronics—Mechatronika (ME), Brno, 2014, pp 203–208. https://doi.org/10.1109/mechatronika.2014.7018259

  20. Chapman SJ (2012) Electric Machinery Fundamentals, 5th edn. McGraw Hill, New York

    Google Scholar 

  21. Gopal R, Venkatesan A, Lakshmanan M (2013) Applicability of 0–1 test for strange nonchaotic attractors. Chaos 23:023123-1–023123-15. https://doi.org/10.1063/1.4808254

    Article  MathSciNet  MATH  Google Scholar 

  22. Parker TS, Chua LO (1989) Practical numerical algorithms for chaotic systems. Springer, New York

    Book  MATH  Google Scholar 

  23. Piccirillo V, Balthazar JM, Tusset AM, Bernardini D, Rega G (2015) Nonlinear dynamics of a thermomechanical pseudoelastic oscillator excited by non-ideal energy sources. Int J Non-Linear Mech 77:12–27. https://doi.org/10.1016/j.ijnonlinmec.2015.06.013

    Article  Google Scholar 

  24. Tusset AM, Piccirillo V, Janzen FC, Lenz WB, Lima JJ, Balthazar JM, Brasil RMLRF (2014) Suppression of vibrations in a nonlinear half-car model using a magneto-rheological damper. Math Eng Sci Aerosp 5:427–443

    MATH  Google Scholar 

  25. Felix JLP, Silva EL, Balthazar JM, Tusset AM, Bueno AM, Brasil RMLRF (2014) On nonlinear dynamics and control of a robotic arm with chaos. MATEC Web Conf 16:05002. https://doi.org/10.1051/matecconf/20141605002

    Article  Google Scholar 

  26. Arbex HC, Balthazar JM, de Pontes Junior BR, Brasil RMLRF, Felix JL, Tusset AM, Bueno AM (2014) On nonlinear dynamics behavior and control of a new model of a magnetically levitated vibrating system, excited by an unbalanced DC motor of limited power supply. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-014-0233-0

    Google Scholar 

  27. Bernardini D, Litak G (2015) An overview of 0–1 test for chaos. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-015-0453-y

    Google Scholar 

  28. Litak G, Schubert S, Radons G (2012) Nonlinear dynamics of a regenerative cutting process. Nonlinear Dyn 69:1255–1262. https://doi.org/10.1007/s11071-012-0344-z

    Article  MathSciNet  Google Scholar 

  29. Krese B, Govekar E (2012) Nonlinear analysis of laser droplet generation by means of 0–1 test for chaos. Nonlinear Dyn 67:2101–2109. https://doi.org/10.1007/s11071-011-0132-1

    Article  Google Scholar 

  30. Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.64.1196

    MathSciNet  MATH  Google Scholar 

  31. Hubinger B, Doerner R, Martienssen W, Herdering M, Pitka R, Dressler U (1994) Controlling chaos experimentally in systems exhibiting large effective Lyapunov exponents. Phys Rev E 50:932–948. https://doi.org/10.1103/PhysRevE.50.932

    Article  Google Scholar 

  32. Reyl C, Flepp L, Badii R, Brun E (1993) Control of NMR-laser chaos in high-dimensional embedding space. Phys Rev E 47:267–272. https://doi.org/10.1103/PhysRevE.47.267

    Article  Google Scholar 

  33. Gauthier DJ, Sukow DW, Concannon HM, Socolar JES (1994) Stabilizing unstable periodic orbits in a fast diode resonator using continuous time-delay auto-synchronization. Phys Rev E 50:2343–2346. https://doi.org/10.1103/PhysRevE.50.2343

    Article  Google Scholar 

  34. Just W, Reibold DE, Benner H, Kacperski K, Fronczak P, Hołyst J (1999) Limits of time-delayed feedback control. Phys Lett A 254:158–164. https://doi.org/10.1016/S0375-9601(99)00113-9

    Article  Google Scholar 

  35. Pyragas K (1992) Continuous control of chaos by self-controlling feedback. Phys Lett A 170:421–428. https://doi.org/10.1016/0375-9601(92)90745-8

    Article  Google Scholar 

  36. Pyragas K (1995) Control of chaos via extended delay feedback. Phys Lett A 206:323–330. https://doi.org/10.1016/0375-9601(95)00654-L

    Article  MathSciNet  MATH  Google Scholar 

  37. Socolar JES, Sukow DW, Gauthier DJ (1994) Stabilizing unstable periodic orbits in fast dynamical systems. Phys Rev E 50:3245–3248. https://doi.org/10.1103/PhysRevE.50.3245

    Article  Google Scholar 

  38. Tereshko V (2009) Control and identification of chaotic systems by altering their energy. Chaos Solitons Fractals 40(5):2430–2446. https://doi.org/10.1016/j.chaos.2007.10.056

    Article  MathSciNet  MATH  Google Scholar 

  39. Tereshko V, Chacon R, Carballar J (2004) Controlling the chaotic Colpitts oscillator by altering its oscillation energy. In: Proceedings of the 12th International IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES 2004), Evora, Portugal, p. 336

  40. Tereshko V, Chacon R, Preciado V (2004) Controlling chaotic oscillators by altering their energy. Phys Lett A 320:408–416. https://doi.org/10.1016/j.physleta.2003.11.057

    Article  MathSciNet  Google Scholar 

  41. De Godoy WR, Balthazar JM, de Pontes Junior BR, Felix JL, Tusset AM (2013) A note on non-linear phenomena in a non-ideal oscillator, with a snap-through truss absorber, including parameter uncertainties. Proc Inst Mech Eng K J Multi-body Dyn 227:76–86

    Google Scholar 

  42. Tusset AM, Piccirillo V, Bueno AM, Balthazar JM, Sado D, Felix JLP, Brasil RMLRF (2015) Chaos control and sensitivity analysis of a double pendulum arm excited by an RLC circuit based nonlinear shaker. J Vib Control 1:1–17. https://doi.org/10.1177/1077546314564782

    Google Scholar 

  43. Triguero RC, Murugan S, Gallego R, Friswell MI (2013) Robustness of optimal sensor placement under parametric uncertainty. Mech Syst Signal Process 41(1–2):268–287. https://doi.org/10.1016/j.ymssp.2013.06.022

    Article  Google Scholar 

  44. Tusset AM, Piccirillo V, Balthazar JM, Brasil RMLRF (2015) On suppression of chaotic motions of a portal frame structure under non-ideal loading using a magneto-rheological damper. J Theor Appl Mech (Warsaw) 53(3):653–664. https://doi.org/10.15632/jtam-pl.53.3.653

    Article  Google Scholar 

  45. Tusset AM, Janzen FC, Piccirillo V, Rocha RT, Balthazar JM, Litak G (2017) On nonlinear dynamics of a parametrically excited pendulum using both active control and passive rotational (MR) damper. J Vib Control. https://doi.org/10.1177/1077546317714882

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Henrique Avanço.

Additional information

Technical Editor: Aline Souza de Paula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avanço, R.H., Tusset, A.M., Balthazar, J.M. et al. On nonlinear dynamics behavior of an electro-mechanical pendulum excited by a nonideal motor and a chaos control taking into account parametric errors. J Braz. Soc. Mech. Sci. Eng. 40, 23 (2018). https://doi.org/10.1007/s40430-017-0955-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-017-0955-x

Keywords

Navigation