Skip to main content
Log in

Mixed convection in a triangular cavity permeated with micropolar nanofluid-saturated porous medium under the impact of MHD

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This article contains numerical results for mixed convection through an isosceles triangular cavity enclosing micropolar nanofluid when a uniform magnetic field is applied along the x-axis. Heat is provided uniformly through inclined side walls of the enclosure where the bottom wall of the enclosure is cold and moves with constant speed. The finite element method has been adopted to compute the numerical simulations for a wide range of pertinent flow parameters, including Grashof number (\(10^{4} \le {\text{Gr}} \le 10^{5}\)), Hartman number (\(0 \le {\text{Ha}} \le 60\)), Darcy number (\(10^{ - 3} \le {\text{Da}} \le 10^{ - 1}\)), Prandtl numbers (\(0.72 \le { \Pr } \le 6.2\)), viscosity parameter (\(0 \le K_{1} \le 10\)) and solid volume fraction (\(0 \le \phi \le 0.1\)). It is observed through this investigation that introducing nano-sized copper particles amplifies the conductivity of the fluid where augmentation in the strength of the magnetic field attenuates the heat transfer rate in the enclosure. Furthermore, larger values of Darcy number escalate the flow strength in the cavity, and increase in solid volume fraction increases the average Nusselt number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

B 0 :

Magnetic induction, Tesla N/Am2

c p :

Specific heat, J/kg K

Da:

Darcy number

g :

Acceleration of gravity, m2/s

Gr:

Grashof number

Ha:

Hartmann number

j :

Micro-inertia, m2

K 1 :

Dimensionless viscosity parameter

K 2 :

Permeability, m2

k :

Thermal conductivity, W/m K

L :

Cavity width, m

N :

Microrotation, m

Nu:

Nusselt number

p :

Pressure, N/m2

P :

Dimensionless pressure, P = pL2/ρ nf α 2f

Pr:

Prandtl number

R :

Residue

Re:

Reynolds number

T :

Local temperature, K

T c :

Cold wall temperature, K

T h :

Hot wall temperature, K

u :

Velocity component in x direction

U :

Dimensionless velocity component in X direction

U o :

Velocity of moving wall

v :

Velocity component in y direction

V :

Dimensionless velocity component in X direction

x, y :

Dimensional coordinates

X, Y :

Dimensionless coordinates

α :

Thermal diffusivity, m2/s

β :

Coefficient of thermal expansion, K−1

γ :

Penalty parameter

γ 1 :

Spin-gradient viscosity, kg/ms

ΔT :

Temperature difference, T h − T c, K

\(\varepsilon\) :

Perturbation parameter

\(\theta\) :

Dimensionless temperature (T − T c)/(T hT c)

\(\kappa\) :

Vortex viscosity

\(\mu\) :

Dynamic viscosity, kg/m s

\(\nu\) :

Kinematic viscosity, m2/s

\(\rho\) :

Local density, kg/m3

\(\rho_{\text{o}}\) :

Characteristic density, kg/m3

\(\sigma\) :

Electrical conductivity, Am/V

\(\sigma_{1}\) :

Eigenvalues

\(\sigma_{\text{r}}\) :

Real part of eigenvalues

\(\sigma_{\text{i}}\) :

Imaginary part of eigenvalues

\(\phi\) :

Solid volume fraction

\(\phi_{\text{i}}\) :

Base functions

\(\psi\) :

Dimensionless stream function

\(\varOmega\) :

Internal domain

f :

Base fluid

nf:

Nanofluid

s :

Nanoparticle

References

  1. Eringen AC (1966) Theory of micropolar fluids. J Math Mech 16:1–16

    MathSciNet  Google Scholar 

  2. Jena SK, Bhattacharyya SP (1986) The effect of microstructure on the thermal convection in a rectangular box of fluid heated from below. Int J Eng Sci 24:69–78

    Article  MathSciNet  MATH  Google Scholar 

  3. Hsu TH, Chen CK (1996) Natural convection of micropolar fluids in a rectangular enclosure. Int J Eng Sci 34:407–415

    Article  MATH  Google Scholar 

  4. Saleem M, Asghar S, Hossain MA (2011) Natural convection flow of micropolar fluid in a rectangular cavity heated from below with cold sidewalls. Math Comput Model 54:508–518

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang SG, Hsu TH (1993) Natural convection of micropolar fluids in an inclined rectangular enclosure. Math Comput Model 17:73–80

    Article  MATH  Google Scholar 

  6. Zadravec M, Hribersek M, Skerget L (2009) Natural convection of micropolar fluid in an enclosure with boundary element method. Eng Anal Bound Elem 33:485–492

    Article  MathSciNet  MATH  Google Scholar 

  7. Gibanov NS, Sheremet MA, Pop I (2016) Free convection in a trapezoidal cavity filled with a micropolar fluid. Int J Heat Mass Transf 99:831–838

    Article  Google Scholar 

  8. Alloui Z, Vasseur P (2010) Natural convection in a shallow cavity filled with a micropolar fluid. Int J Heat Mass Transf 53:2750–2759

    Article  MATH  Google Scholar 

  9. Gibanov NS, Sheremet MA, Pop I (2016) Natural convection of micropolar fluid in a wavy differentially heated cavity. J Mol Liq 221:518–525

    Article  Google Scholar 

  10. Hsu TH, Wang SG (2000) Mixed convection of micropolar fluids in a cavity. Int J Heat Mass Transf 43:1563–1572

    Article  MATH  Google Scholar 

  11. Bég OA, Bhargava R, Rawat S, Takhar HS, Bég TA (2007) A study of steady buoyancy-driven dissipative micropolar free convection heat and mass transfer in a darcian porous regime with chemical reaction. Nonlinear Anal Model Control 12:157–180

    MathSciNet  MATH  Google Scholar 

  12. Rahman MM, Aziz A, Al-Lawatia MA (2010) Heat transfer in micropolar fluid along an inclined permeable plate with variable fluid properties. Int J Therm Sci 49:993–1002

    Article  Google Scholar 

  13. Si X, Zheng L, Lin P, Zhang X, Zhang Y (2013) Flow and heat transfer of a micropolar fluid in a porous channel with expanding or contracting walls. Int J Heat Mass Transf 67:885–895

    Article  Google Scholar 

  14. Sheikholeslami M, Ashorynejad HR, Ganji DD, Rashidi MM (2014) Heat and mass transfer of a micropolar fluid in a porous channel. Commun Numer Anal 2014:1–20

    Article  MathSciNet  Google Scholar 

  15. Nayak MK, Dash GC, Singh LP (2015) Steady free convection and mass transfer MHD flow of a micropolar fluid in a vertical channel with heat source and chemical reaction. Walailak J Sci Technol 12:785–804

    Google Scholar 

  16. Rashidi MM, Reza M, Gupta S (2016) MHD stagnation point flow of micropolar nanofluid between parallel porous plates with uniform blowing. Powder Technol 301:876–885

    Article  Google Scholar 

  17. Bourantas GC, Loukopoulos VC (2014) Modeling the natural convective flow of micropolar nanofluids. Int J Heat Mass Transf 68:35–41

    Article  Google Scholar 

  18. Bourantas GC, Loukopoulos VC (2014) MHD natural-convection flow in an inclined square enclosure filled with a micropolar-nanofluid. Int J Heat Mass Transf 79:930–944

    Article  Google Scholar 

  19. Ahmed SE, Mansour MA, Hussein AK, Sivasankaran S (2016) Mixed convection from a discrete heat source in enclosures with two adjacent moving walls and filled with micropolar nanofluids. Eng Sci Technol Int J 19:364–376

    Article  Google Scholar 

  20. Nield DA, Bejan A (2006) Convection in porous media, 3rd edn. Springer, New York

    MATH  Google Scholar 

  21. Oosthuizen PH, Naylor D (1999) An introduction to convective heat transfer analysis, McGraw-Hill, International Edition, New York

  22. Davidson PA (2001) An introduction to magnetohydrodynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  23. Garandet JP, Alboussiere T, Moreau R (1992) Buoyancy driven convection in a rectangular enclosure with a transverse magnetic field. Int J Heat Mass Transf 35:741–748

    Article  MATH  Google Scholar 

  24. Javed T, Siddiqui MA, Mehmood Z, Pop I (2015) MHD natural convective flow in an isosceles triangular cavity filled with porous medium due to uniform/non-uniform heated side walls. Zeitschrift für naturforschung A 70:919–928

    Article  Google Scholar 

  25. Javed T, Mehmood Z, Abbas Z (2017) Natural convection in square cavity filled with ferrofluid saturated porous medium in the presence of uniform magnetic field. Physica B 506:122–132

    Article  Google Scholar 

  26. Batchelor GK (1993) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  27. Pelekasis NA (2006) Linear stability analysis and dynamic simulations of free convection in a differentially heated cavity in the presence of a horizontal magnetic field and a uniform heat source. Phys Fluids 18:034101

    Article  MathSciNet  MATH  Google Scholar 

  28. Teamah MA, Maghlany WME (2012) Augmentation of natural convective heat transfer in square cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. Int J Therm Sci 58:130–142

    Article  Google Scholar 

  29. Ganzarollli MM, Milanez LF (1995) Natural convection in rectangular enclosure heated from below and symmetrically cooled from sides. Int J Heat Mass Transf 38:1063–1073

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Higher Education Commission of Pakistan under the scheme “National Research Program for Universities” through Project Number 3713. Furthermore, the authors are grateful to the editor and the anonymous reviewers for the insightful comments and suggestions which improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziafat Mehmood.

Additional information

Technical Editor: Jader Barbosa Jr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, T., Mehmood, Z. & Siddiqui, M.A. Mixed convection in a triangular cavity permeated with micropolar nanofluid-saturated porous medium under the impact of MHD. J Braz. Soc. Mech. Sci. Eng. 39, 3897–3909 (2017). https://doi.org/10.1007/s40430-017-0850-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0850-5

Keywords

Navigation