Skip to main content
Log in

Comparison of the steady-state performance of hydrostatic drives used in the rotary head of the drill machine

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This article presents a comparative analysis of steady-state behavior of hydrostatic drives of a drill machine used in mining application. Usually, a closed-circuit hydrostatic drive rotates the cutter head (drill bit) of a drill machine through its rotary head. In this respect, performance investigation of two such alternative drives is carried out through modeling, simulation and experimentation. One of the drives comprises a variable displacement pump and two high speed low torque (HSLT) bent axis motors with a gear reducer, whereas another one consists of an identical pump and a low speed high torque (LSHT) radial piston motor. To simulate the hydrostatic drives, the bondgraph models are made, where various losses are considered as resistive elements. Considering the characteristics of the losses obtained experimentally, the predicted performances of the systems obtained through simulation are validated with the test data. The dependencies of the losses on the pump displacement and the load torque on the drives are also analyzed. The characteristics of the drives with respect to the operating speed range of the drill machine used in mining operation are studied at different torque levels. On the basis of the results obtained, suitability of the hydrostatic drives for the rotary head of the drill machine is also discussed for different rock characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

D p :

Volume displacement rate of the pump (m3/rad)

D pmax :

Maximum volume displacement rate of the pump (m3/rad)

D mh,ml :

Volume displacement rate of the HSLT or LSHT hydro-motor (m3/rad)

J ld :

Generalized load inertia of the driving shaft (Kg m2)

J ldh,ldl :

Load inertia of the HSLT or LSHT driving shaft (kg m2)

K cp :

Bulk stiffness of the fluid at pump plenum (N/m5)

K cmh,cml :

Bulk stiffness of the fluid at HSLT or LSHT hydro-motor plenum (N/m5)

M ih,il :

Angular momentum due to load inertia of the HSLT or LSHT drive (kg m2/s2)

\(\dot{M}_{ih,il}\) :

Torque due to load inertia of the HSLT or LSHT driving shaft (Nm)

N mah,mal :

Actual rotational speed of the HSLT or LSHT hydrostatic drive (rad/s)

N mi :

Ideal rotational speed of the hydrostatic drive (rad/s)

N mih,mil :

Ideal rotational speed of the HSLT or LSHT hydrostatic drive (rad/s)

N mp :

Predicted rotational speed of the hydrostatic drive (rad/s)

N p :

Speed of the pump (rad/s)

P lmh,lml :

Load pressure of the HSLT or LSHT hydro-motor (N/m2)

P pp :

Recorded operating pressure of the main pump (N/m2)

Q mlkgh,mlkgl :

External leakage flow of the HSLT or LSHT hydro-motor (m3/s)

Q plkg :

External leakage flow of the pump (m3/s)

R el :

External leakage resistance coefficient of the hydro-motor (N s/m5)

R elh,ell :

External leakage resistance coefficient of the HSLT or LSHT hydro-motor (N-s/m5)

R eq :

Equivalent leakage resistance coefficient of the hydro-motor (N s/m5)

R eqh,eql :

Equivalent leakage resistance coefficient of the HSLT or LSHT hydro-motor (N s/m5)

R ilh,ill :

Internal leakage resistance coefficient of the HSLT or LSHT hydro-motor (N s/m5)

R ld :

Generalized load resistance (Nm-s)

R ldh,ldl :

Load resistance of the HSLT or LSHT hydrostatic drive (Nm-s)

R pd :

Drag resistance coefficient of the pump (Nm-s)

R pl :

Leakage resistance coefficient of the pump (N-s/m5)

R vi :

Inlet valve-port resistance coefficient of the hydro-motor (N s/m5)

R vih,vil :

Inlet valve-port resistance coefficient of the HSLT or LSHT hydro-motor (N s/m5)

S ah,al :

Actual slip of the HSLT or LSHT hydrostatic drive

S ph,pl :

Predicted slip of the HSLT or LSHT hydrostatic drive

T ip :

Generalized steady-state pump torque (Nm)

T ldh,ldl :

Load torque on motor shaft of the HSLT or LSHT hydrostatic drive (Nm)

T mi :

Ideal load torque on motor shaft of the hydrostatic drive (Nm)

T mih,mil :

Ideal load torque on motor shaft of the HSLT or LSHT hydrostatic drive (Nm)

T mp :

Predicted load torque on motor shaft of the hydrostatic drive (Nm)

T pp :

Predicted pump torque (Nm)

\(\dot{V}_{cp}\) :

Volume change rate of the fluid at the pump plenum (m3/s)

\(\dot{V}_{cmh,cml}\) :

Volume change rate of the fluid at the HSLT or LSHT hydro-motor plenum (m3/s)

β pd :

Displacement ratio of the pump

ΔT lah,lal :

Actual torque loss of the HSLT or LSHT hydrostatic drive (Nm)

ΔT lph,lpl :

Predicted torque loss of the HSLT or LSHT hydrostatic drive (Nm)

η ah,al :

Actual overall efficiency of the HSLT or LSHT hydrostatic drive

η ph,pl :

Predicted overall efficiency of the HSLT or LSHT hydrostatic drive

0:

Common effort bondgraphic junctions

1:

Common flow bondgraphic junctions

References

  1. Rydberg KE (1998) Hydrostatic drives in heavy mobile machinery—new concepts and development trends. SAE Technical Paper Sep 14

  2. Murrenhoff H (1999) Systematic approach to the control of hydrostatic drives. Proceed Instit Mech Eng Part I J Syst Contr Eng 213(5):333–347

    Google Scholar 

  3. Watton J (2006) An explicit design approach to determine the optimum steady state performance of axial piston motor drives. Proceed Instit Mech Eng Part I J Syst Contr Eng 220(2):131–143

    Google Scholar 

  4. Williamson C, Ivantysynova M (2007) The effect of pump efficiency on displacement-controlled actuator systems. Proceed Tenth Scandin Int Confer Fluid Power Tampere Finland 2:301–326

    Google Scholar 

  5. Mandal SK, Dasgupta K, Pan S, Chattopadhyay A (2009) Theoretical and experimental studies on the steady-state performance of low-speed high-torque hydrostatic drives. Part 1: modelling. Proceed Instit Mech Eng Part C J Mech Eng Sci 223(11):2663–2674

    Article  Google Scholar 

  6. Mandal SK, Dasgupta K, Pan S, Chattopadhyay A (2009) Theoretical and experimental studies on the steady-state performance of low-speed high-torque hydrostatic drives. Part 2: experimental investigation. Proceed Instit Mech Eng Part C J Mech Eng Sci 223(11):2675–2685

    Article  Google Scholar 

  7. Triet HH, Ahn KK (2011) Comparison and assessment of a hydraulic energy-saving system for hydrostatic drives. Proceed Instit Mech Eng Part C J Mech Eng Sci 225(1):21–34

    Google Scholar 

  8. Paoluzzi R, Zarotti LG (2013) The minimum size of hydrostatic transmissions for locomotion. J Terrramech 50(3):153–164

    Article  Google Scholar 

  9. Shi H, Yang H, Gong G, Liu H, Hou D (2014) Energy saving of cutterhead hydraulic drive system of shield tunneling machine. Autom Constr 31(37):11–21

    Article  Google Scholar 

  10. Borghi M, Zardin B, Pintore F, Belluzzi F (2014) Energy savings in the hydraulic circuit of agricultural tractors. Energy Procedia 31(45):352–361

    Article  Google Scholar 

  11. Khrapak AV (2001) Controlled Valve Plate in Bent Axis Hydraulic Motors. Int J Fluid Power 2(2):65–74

    Article  Google Scholar 

  12. Miller MK, Khalid H, Michael PW, Guevremont JM, Garelick KJ, Pollard GW, Whitworth AJ, Devlin MT (2014) An investigation of hydraulic motor efficiency and tribological surface properties. Tribol Trans 57(4):622–630

    Article  Google Scholar 

  13. Kumar N, Dasgupta K (2015) Steady-state performance investigation of hydrostatic summation drives using bent-axis hydraulic motor. Proceed Instit Mech Eng Part C J Mech Eng Sci 229(17):3234–3251

    Article  Google Scholar 

  14. Operation and maintenance manual of C-650 Drill, Revathi Equipment Limited Coimbatore, India

  15. Product catalogue of Hydraulic crawler drill CD-360, Jupiter Rock drills Hyderabad, India

  16. Borutzky W (2011) Bond graph modelling of engineering systems. Springer, New York

    Book  MATH  Google Scholar 

  17. Kypuros J (2013) System Dynamics and Control with Bond Graph Modeling. CRC Press

  18. Product catalogue of the bent axis piston motor RE 91 001/09.00, Bosch Rexroth India Ltd

  19. Product catalogue of the radial piston motor for wheel drives MCR-F, RE 15198/12.2013, Bosch Rexroth India Ltd

  20. Li Z, Itakura KI (2012) Drilling processes using drag bits and its application. J Civil Eng Archit 6(6):715

    Google Scholar 

  21. Karasawa H, Ohno T, Miyazaki K, Eko A (2016) Experimental results on the effect of bit wear on torque response. Int J Rock Mech Min Sci 30(84):1–9

    Google Scholar 

  22. Jimeno EL, Jimino CL, Carcedo A (1995) Drilling and blasting of rocks. CRC Press

  23. McCandlish D, Dorey RE (1984) The mathematical modelling of hydrostatic pumps and motors. Proceed Instit Mech Eng Part C J Mech Eng Sci 198(3):165–174

    Google Scholar 

  24. Lux J, Murrenhoff H (2016) Experimental loss analysis of displacement controlled pumps. 10th International Fluid Power Conference, Dresden Group I, pp 441–452

  25. Dasgupta K, Mondal SK (2002) Analysis of the steady-state performance of a multi-plunger hydraulic pump. Proceed Instit Mech Eng Part A J Power Energy 216(6):471–479

    Article  Google Scholar 

  26. Product catalogue of standard gear unit modular system CSB140, New Allenberry Works, India

  27. Product catalogue of the variable displacement pump RA 92003-A/06.09, Bosch Rexroth India Ltd

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Vardhan.

Additional information

Technical Editor: Jose A. dos Reis Parise.

Appendices

Appendix 1

From the characteristics shown in Figs. 7, 8, 9, 10, 11, 12, 13 and 14, the empirical relations that express the variation of R pl , R pd , R vih , R vil , R elh , R ell , R eqh and R eql with β pd are given below (for, 0 ≤ β pd ≤ 1 and 340 Nm ≤ T ld ≤ 540 Nm):

$$R_{pl} \, \times 10^{ - 11} = \,x\, \times \,\beta_{pd}^{2} \, + \,y\,\, \times \,\beta_{pd} + \,z$$
(43)

where \(x\, = \, - 1 \times 10^{ - 6} T_{ld}^{2} + \,0.0035T_{ld} - 0.4514\), \(y\, = \, - 9 \times 10^{ - 6} T_{ld}^{2} \, + \,0.0064T_{ld} - 0.366\) and \(z\,\, = \,7 \times 10^{ - 6} T_{ld}^{2} \, - 0.0122T_{ld} + 8.5502\)

$$R_{pd} \times 10^{2} = \,x \times \,\beta_{pd} \, + \,y$$
(44)

where \(x = \,9 \times 10^{ - 7} T_{ld}^{2} - 0.0023T_{ld} + \,1.0659\) and \(y = \, - 1 \times 10^{ - 6} T_{ld}^{2} \, + 0.004T_{ld} - 0.427\)

$$R_{vih} \times 10^{ - 8} = \,x\, \times \,\,\beta_{pd}^{2} \, + \,y\, \times \,\beta_{pd} \, + \,\,z$$
(45)

where \(x\,\, = \, - 2 \times 10^{ - 5} \,T_{ldh}^{2} + 0.0107T_{ldh} + 23.313\), \(y\,\, = \,\,2 \times 10^{ - 6} T_{ldh}^{2} - 0.0169T_{ldh} - 30.049\) and \(z\, = \,3 \times 10^{ - 5} \,T_{ldh}^{2} + 0.0199T_{ldh} + 6.6242\)

$$R_{vil} \times 10^{ - 8} = \,x\beta_{pd} \, + \,y$$
(46)

where \(x = \,0.0001T_{ldl}^{2} - 0.1044T_{ldl} + 10.43\) and \(y = \,0.1084T_{ldl} + 21.98\)

$$R_{elh} \times 10^{ - 11} = \,x\, \times \,\beta_{pd}^{2} \, + \,y\,\, \times \,\,\beta_{pd} \, + \,\,z$$
(47)

where \(x\,\, = \,0.0001T_{ldh}^{2} - 0.1262T_{ldh} + 35.028\),\(y\,\, = \, - 0.0001T_{ldh}^{2} + 0.1749T_{ldh} - 60.644\) and \(z\, = \,2 \times 10^{ - 5} T_{ldh}^{2} - 0.0646T_{ldh} + 32.808\)

$$R_{ell} \times 10^{ - 11} = \,x\beta_{pd} + y$$
(48)

where \(x\, = \,3 \times 10^{ - 6} T_{ldl}^{2} - 0.002T_{ldl} + 0.0693\) and \(y = \, - 0.0099T_{ldl} + 18.441\)

$$R_{eqh} \times 10^{ - 12} = \,x\, \times \,\,\beta_{pd} \, + \,\,y$$
(49)

where \(x\, = \,1 \times 10^{ - 7} T_{ldh}^{2} \, - \,0.0001T_{ldh} + \,0.0228\) and \(y = \,2 \times 10^{ - 8} T_{ldh}^{2} - 8 \times 10^{ - 5} T_{ldh} + 1.1205\)

$$R_{eql} \times 10^{ - 12} = x\beta_{pd} + y$$
(50)

where \(x\, = \,5 \times 10^{ - 6} T_{ldl}^{2} - 0.0042T_{ldl} + 0.6008\) and \(y\, = \,2 \times 10^{ - 6} T_{ldl}^{2} - 0.0043T_{ldl} + 9.3417\)

Appendix 2

The predicted rotational speed and the pump torque of the HSLT and the LSHT drives are:

$$N_{mph} \,\, = \,\,\frac{{D_{p} \,\,N_{p} }}{{2\,D_{mh} }}\,\left( {1\,\, - \,\,\frac{{R_{vih} }}{{R_{vih} \, + \,2\,R_{pl} }}} \right)\,\, - \,\,\frac{{T_{ldh} }}{{2\,D_{mh}^{2} }}\,\left( {\frac{1}{{R_{vih} \, + \,2\,R_{pl} }}\,\, + \,\,\frac{1}{{R_{eqh} }}\,\, + \,\,\frac{1}{{R_{elh} }}} \right)$$
(51)
$$N_{mpl} \,\, = \,\,\frac{{D_{p} \,N_{p} }}{{D_{ml} }}\,\left( {1\,\, - \,\,\frac{{R_{vil} }}{{R_{vil} \, + \,R_{pl} }}} \right)\,\, - \,\,\frac{{T_{ldl} }}{{D_{ml}^{2} }}\,\left( {\frac{1}{{R_{vil} \, + \,R_{pl} }}\,\, + \,\,\frac{1}{{R_{eql} }}\,\, + \,\,\frac{1}{{R_{ell} }}} \right)$$
(52)
$$T_{pph} \,\, = \,\,N_{p} \,R_{pd} \,\, + \,\,\left( {\frac{{D_{p} }}{{D_{mh} }}} \right)\,\frac{{R_{pl} }}{{R_{vih} \, + \,2\,R_{pl} }}\,\left( {D_{p} \,D_{mh} \,N_{p} \,R_{vih} \,\, + \,\,T_{ldh} } \right)$$
(53)
$$T_{ppl} \,\, = \,\,N_{p} \,R_{pd} \,\, + \,\,\left( {\frac{{D_{p} }}{{D_{ml} }}} \right)\,\frac{{R_{pl} }}{{R_{vil} \, + \,\,R_{pl} }}\,\left( {D_{p} \,D_{ml} \,N_{p} \,R_{vil} \,\, + \,\,T_{ldl} } \right)$$
(54)

Appendix 3

The coefficients α 1 through α 9 of Eqs. (40) and (41) are given below:\(a_{1} \,\, = \,\,\frac{{N_{p} }}{{2\,D_{mh} }}\,\left( {1\,\, - \,\,\frac{{R_{vih} }}{{R_{vih} \,\, + \,\,2\,R_{pl} }}} \right)\) \(a_{2} \,\, = \,\,\frac{1}{{2\,D_{mh}^{2} }}\,\left( {\frac{1}{{R_{vih} \,\, + \,\,2\,R_{pl} }}\,\, + \,\,\frac{1}{{R_{eqh} }}\,\, + \,\,\frac{1}{{R_{elh} }}} \right)\); \(a_{3} \,\, = \,\,\frac{{N_{p} }}{{D_{mh} }}\,\left( {\frac{{R_{pl} }}{{R_{vih} \,\, + \,\,2\,R_{pl} }}} \right)\); \(a_{4} \,\, = \,\,N_{p}^{2} \,\left( {\frac{{R_{vih} \,R_{pl} }}{{R_{vih} \,\, + \,\,2\,R_{pl} }}} \right)\); \(a_{5} \,\, = \,\,N_{p}^{2} \,R_{pd}\); \(a_{6} \,\, = \,\,\frac{{N_{p} }}{{D_{ml} }}\,\left( {1\,\, - \,\,\frac{{R_{vil} }}{{R_{vil} \,\, + \,\,R_{pl} }}} \right)\); \(a_{7} \,\, = \,\,\frac{1}{{D_{ml}^{2} }}\,\left( {\frac{1}{{R_{vil} \,\, + \,\,R_{pl} }}\,\, + \,\,\frac{1}{{R_{eql} }}\,\, + \,\,\frac{1}{{R_{ell} }}} \right)\); \(a_{8} \,\, = \,\,\frac{{N_{p} }}{{D_{ml} }}\,\left( {\frac{{R_{pl} }}{{R_{vil} \,\, + \,\,R_{pl} }}} \right)\); \(\quad a_{9} \,\, = \,\,N_{p}^{2} \,\left( {\frac{{R_{vil} \,R_{pl} }}{{R_{vil} \,\, + \,\,R_{pl} }}} \right)\)

Appendix 4: Experimental test-rig

Figures 23 and 24 give the schematic and pictorial representations of the experimental test-rig of the hydrostatic drives and their specifications are indicated in Table 1.

Fig. 23
figure 23

Experimental test-rig of the hydrostatic drives

Fig. 24
figure 24

Pictorial representation of the experimental test-rig of the hydrostatic drives

Referring to Figs. 23 and 24, the main features of the experimental test-rig are as follows:

  1. 1.

    An electric motor (1) drives a variable displacement pump (2) at constant speed. The pump (2) supplies pressurized fluid to the bent axis hydro-motors M1, M2 for the HSLT drive and radial piston hydro-motor M3 for the LSHT drive.

  2. 2.

    The hydro-motors (5, 12) drive the pump (7) of the loading circuit.

  3. 3.

    The loading circuit provides mainly the viscous load on the hydro-motors (5, 12) that is made by adjusting the pressure setting of the proportional pressure relief valve (8) or displacement of the pump (7) of the loading circuit.

  4. 4.

    The signal voltages that varies from 0 to 10 V dc sent from the control panel varies the swash plate angle of the pumps (2, 7) and adjusts the set pressure of the relief valve (8). Thus, the load on the motor shaft is controlled.

  5. 5.

    The sensors along with the digital indicators are provided to record the parameters as pressure, flow, rotational speed and torque.

  6. 6.

    The fluid used in the experiment is of ISO 32 grade mineral oil, the viscosity, bulk modulus and the density of which are 0.025 Ns/m2, 1.8 × 109 N/m2 and 850 kg/m3, respectively. By providing suitable oil cooler, the oil temperature was maintained at 50 ± 2 °C during experiment, and thus the viscosity of the fluid has been kept constant with reasonable accuracy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vardhan, A., Dasgupta, K. & Kumar, N. Comparison of the steady-state performance of hydrostatic drives used in the rotary head of the drill machine. J Braz. Soc. Mech. Sci. Eng. 39, 4403–4419 (2017). https://doi.org/10.1007/s40430-017-0803-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0803-z

Keywords

Navigation