Skip to main content
Log in

Natural frequencies of shear deformed functionally graded beams using inverse trigonometric functions

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, free vibration of functionally graded (FG) beam subjected to all sets of boundary conditions has been investigated using Rayliegh-Ritz method. Different higher-order shear deformation beam theories (SDBTs) have also been incorporated, out of which three SDBTs are proposed in the form of inverse trigonometric functions. The proposed deformation theories satisfy the transverse shear stress conditions at the bottom and top surfaces of the beam. The material properties of FG beam are assumed to vary along thickness direction in power-law form and trial functions denoting the displacement components are expressed as linear combination of algebraic polynomials. Rayleigh–Ritz method is used to estimate frequency parameters in order to handle to all sorts of boundary conditions at the edges with ease. Comparison of frequency parameters is carried out with the available literature in special cases and new results are also provided after checking the convergence of frequency parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Sina SA, Navazi HM, Haddadpour H (2009) Mater Design 30:741

    Article  Google Scholar 

  2. Aydogdu M, Taskin V (2007) Mater Design 28:1651

    Article  Google Scholar 

  3. Şimşek M (2010) Nucl Eng Design 240:697

    Article  Google Scholar 

  4. Mahi A, Adda Bedia EA, Tounsi A, Mechab I (2010) Compos Struct 92:1877

    Article  Google Scholar 

  5. Alshorbagy AE, Eltaher MA, Mahmoud FF (2011) Appl Math Model 35:412

    Article  MathSciNet  Google Scholar 

  6. Shahba A, Attarnejad R, Marvi MT, Hajilar S (2011) Compos Part B 42:801

    Article  Google Scholar 

  7. Shahba A, Rajasekaran S (2012) Appl Math Model 36:3094

    Article  MathSciNet  Google Scholar 

  8. Thai HT, Vo TP (2012) Int J Mech Sci 62:57

    Article  Google Scholar 

  9. Şimşek M (2012) Comput Mater Sci 61:257

    Article  Google Scholar 

  10. Vo TP, Thai HT, Nguyen TK, Inam F (2014) Meccanica 49:155

  11. Nguyen TK, Vo TP, Thai HT (2013) Compos Part B 55:147

    Article  Google Scholar 

  12. Nie GJ, Zhong Z, Chen S (2013) Compos Part B 44:274

    Article  Google Scholar 

  13. Huang Y, Yang LE, Luo QZ (2013) Compos Part B 42:1493

    Article  Google Scholar 

  14. Pradhan KK, Chakraverty S (2013) Compos Part B 51:175

    Article  Google Scholar 

  15. Pradhan KK, Chakraverty S (2014) Int J Mech Sci 82:149

    Article  Google Scholar 

  16. Sharma DK, Sharma JN, Dhaliwal SS, Walia V (2014) Acta Mechanica Sinica 30(1):100

    Article  MathSciNet  Google Scholar 

  17. Komijani M, Reddy JN, Eslami ER (2014) J Mech Phys Solids 63:214

    Article  MathSciNet  Google Scholar 

  18. Reddy JN (1984) Int J Solids Struct 20(9/10):881

    Article  Google Scholar 

  19. Xiao JR, Batra RC, Gilhooley DF, Gillespie JW Jr, McCarthy MA (2007) Comput Methods Appl Mech Eng 197:979

    Article  Google Scholar 

  20. Xiang S, Wang K, Ai Y, Sha Y, Shi H (2009) Compos Struct 91:31

    Article  Google Scholar 

  21. Aydogdu M (2009) Compos Struct 89:94

    Article  Google Scholar 

  22. Reddy JN (2011) J Mech Phys Solids 59:2382

    Article  MathSciNet  Google Scholar 

  23. Grover N, Singh BN, Maiti DK (2013) J Aerosp Eng 228:1788

  24. Wattanasakulpong N, Prusty BG, Kelly DW (2011) Int J Mech Sci 53:734

    Article  Google Scholar 

  25. Qu Y, Long X, Li H, Meng G (2013) Compos Struct 102:175

    Article  Google Scholar 

  26. Şimşek M, Reddy JN (2013) Int J Eng Sci 64:37

    Article  Google Scholar 

  27. Thai CH, Ferreira AJM, Bordas SPA, Rabczuk T, Nguyen-Xuan H (2014) Eur J Mech A Solids 43:89

    Article  Google Scholar 

  28. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells, 2nd edn. McGraw-Hill, Singapore

    MATH  Google Scholar 

  29. Kelly SG (1999) Fundamentals of mechanical vibrations, 2nd edn. McGraw-Hill Series in Mechanical Engineering, Singapore

    Google Scholar 

  30. Rao SS (2004) The finite element method in engineering. Elsevier Science and Technology Books, Miami

    Google Scholar 

  31. Chakraverty S (2009) Vibration of plates. CRC Press, Taylor and Francis Group, Florida

  32. Bhat RB (1986) J Sound Vib 105:199

    Article  Google Scholar 

  33. Bhat RB (1985) J Sound Vib 102:493

    Article  Google Scholar 

  34. Cupial P (1997) J Sound Vib 201(3):385

    Article  Google Scholar 

  35. Singh B, Chakraverty S (1991) Int J Mech Sci 33:741

    Article  Google Scholar 

  36. Singh B, Chakraverty S (1992) Comput Struct 43:439

    Article  Google Scholar 

  37. Singh B, Chakraverty S (1992) J Sound Vib 152:149

    Article  Google Scholar 

  38. Ding Z (1996) J Sound Vib 189(1):81

    Article  MathSciNet  Google Scholar 

  39. Carrera E, Fazzolari FA, Demasi L (2011) J Vib Acoust 133:1

    Article  Google Scholar 

  40. Dozio L (2011) Thinwalled Struct 49:129

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the anonymous reviewer(s) for their constructive suggestions, which have certainly improved the contents of the paper. The first author is grateful to CSIR-Central Building Research Institute, Roorkee for the excellent laboratory provisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chakraverty.

Additional information

Technical Editor: Fernando Alves Rochinha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, K.K., Chakraverty, S. Natural frequencies of shear deformed functionally graded beams using inverse trigonometric functions. J Braz. Soc. Mech. Sci. Eng. 39, 3295–3313 (2017). https://doi.org/10.1007/s40430-016-0701-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0701-9

Keywords

Navigation