Skip to main content
Log in

A differential quadrature procedure for free vibration of circular membranes backed by a cylindrical fluid-filled cavity

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a numerical procedure using the differential quadrature method (DQM) to study the free vibration of circular membranes backed by a cylindrical fluid-filled cavity. The governing differential equation of the circular membrane and that of the circular cylindrical fluid cavity are first discretized using the DQM. By applying the fluid–membrane interface boundary condition, the governing eigenvalue equations of the coupled system are then obtained which can be solved for the eigenvalues of the system. Computational issues related to the singularity of the stiffness matrices of the membrane and fluid are also addressed. Two different new approaches are proposed to overcome these issues. The applicability of the proposed approaches is shown herein through the numerical simulations. The results generated by the proposed approaches are compared with the analytical and numerical results available in the literature. Numerical results prove that the proposed approaches are highly accurate and reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Jenkinsa CHM, Kordeb UA (2006) Membrane vibration experiments: an historical review and recent results. J Sound Vib 295(3):602–613

    Article  Google Scholar 

  2. Chen Y, Huang G, Zhou X, Hu G, Sun C-T (2014) Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: membrane model. J Acoust Soc Am 136:969

    Article  Google Scholar 

  3. Ingard U (1954) Transmission of sound through a stretched membrane. J Acoust Soc Am 26(1):99–101

    Article  Google Scholar 

  4. Cohen H, Handelman G (1957) On the vibration of a circular membrane with added mass. J Acoust Soc Am 29(2):229–233

    Article  MathSciNet  Google Scholar 

  5. Romilly N (1964) Transmission of sound through a stretched ideal membrane. J Acoust Soc Am 36(6):1104

    Article  Google Scholar 

  6. Bauer HF (1981) Hydroelastic vibrations in a rectangular container. Int J Solids Struct 17:639–652

    Article  MATH  Google Scholar 

  7. Hsieh JC, Plaut RH, Yucel O (1989) Vibrations of an inextensible cylindrical membrane inflated with liquid. J Fluid Struct 3(2):151–163

    Article  MATH  Google Scholar 

  8. Bhat RB (1991) Acoustics of a cavity-backed membrane: the Indian musical drum. J Acoust Soc Am 90(3):1469–1474

    Article  Google Scholar 

  9. Kwak MK (1994) Vibration of circular membranes in contact with water. J Sound Vib 178(5):688–690

    Article  Google Scholar 

  10. Bauer HF (1995) Coupled frequencies of a liquid in a circular cylindrical container with elastic liquid surface cover. J Sound Vib 180(5):689–704

    Article  Google Scholar 

  11. Rajalingham C, Bhat RB, Xistris GD (1998) Vibration of circular membrane backed by cylindrical cavity. Int J Mech Sci 40(8):723–734

    Article  MATH  Google Scholar 

  12. Pan LS, Ng TY, Liu GR, Lam KY, Jiang TY (2001) Analytical solutions for the dynamic analysis of a valveless micropump-a fluid-membrane coupling study. J Sens Act A 93(2):173–181

    Article  Google Scholar 

  13. Chiba M, Watanabe H, Bauer HF (2002) Hydroelastic coupled vibrations in a cylindrical container with a membrane bottom, containing liquid with surface tension. J Sound Vib 251(4):717–740

    Article  Google Scholar 

  14. Ghavanloo E, Daneshmand F (2010) Analytical analysis of the static interaction of fluid and cylindrical membrane structures. Eur J Mech A Solids 29(4):600–610

    Article  Google Scholar 

  15. Zhang Y, Wen J, Xiao Y, Wen X, Wang J (2012) Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials. Phys Lett A 376:1489–1494

    Article  Google Scholar 

  16. Tariverdilo S, Mirzapour J, Shahmardani M, Rezazadeh G (2012) Free vibration of membrane/bounded incompressible fluid. Appl Math Mech 33(9):1167–1178

    Article  MathSciNet  Google Scholar 

  17. Tarazaga PA, Johnson ME, Inman DJ (2014) Experimental validation of the vibro-acoustic model of a pressurized membrane. Mech Syst Signal Process 45:330–345

    Article  Google Scholar 

  18. Bellman RE, Casti J (1971) Differential quadrature and long term integrations. J Math Anal Appl 34:235–238

    Article  MathSciNet  MATH  Google Scholar 

  19. Bellman RE, Kashef BG, Casti J (1972) Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. Comput Phys 10:40–52

    Article  MathSciNet  MATH  Google Scholar 

  20. Bert CW, Kang SK, Striz AG (1988) Two new approximate methods for analyzing free vibration of structural components. AIAA J 26:612–618

    Article  MATH  Google Scholar 

  21. Bert CW, Jang SK, Striz AG (1989) Nonlinear bending analysis of orthotropic rectangular plates by the method of differential quadrature. Comput Mech 5:217–226

    Article  MATH  Google Scholar 

  22. Jang SK, Bert CW, Striz AG (1989) Application of differential quadrature to static analysis of structural components. Int J Numer Meth Eng 28:561–577

    Article  MATH  Google Scholar 

  23. Bert CW, Malik M (1996) Differential quadrature method in computational mechanics: a review. ASME Appl Mech Rev 49:1–28

    Article  Google Scholar 

  24. Shu C (2000) Differential quadrature and its application in engineering. Springer, NY

    Book  MATH  Google Scholar 

  25. Zong Z, Zhang Y (2009) Advanced differential quadrature methods. Chapman & Hall, NY

    Book  MATH  Google Scholar 

  26. Fantuzzi N, Tornabene F, Viola E, Ferreira AJM (2014) A strong formulation finite element method (SFEM) based on RBF and GDQ techniques for the static and dynamic analyses of laminated plates of arbitrary shape. Meccanica 49(10):2503–2542

    Article  MathSciNet  MATH  Google Scholar 

  27. Tornabene F, Fantuzzi N, Ubertini F, Viola E (2015) Strong formulation finite element method: a survey. ASME Appl Mech Rev 67:020801

    Article  Google Scholar 

  28. Tanaka M, Chen W (2001) Coupling dual reciprocity BEM and differential quadrature method for time-dependent diffusion problems. Appl Math Model 25:257–268

    Article  MATH  Google Scholar 

  29. Shu C, Yao KS (2002) Block-marching in time with DQ discretization: an efficient method for time-dependent problems. Comput Methods Appl Mech Eng 191:4587–4597

    Article  MATH  Google Scholar 

  30. Eftekhari SA, Jafari AA (2012) Numerical simulation of chaotic dynamical systems by the method of differential quadrature. Sci Iran B 19(5):1299–1315

    Article  Google Scholar 

  31. Eftekhari SA, Jafari AA (2012) Coupling Ritz method and triangular quadrature rule for moving mass problem. ASME J Appl Mech 79(2):021018

    Article  Google Scholar 

  32. Shu C, Richards BE (1992) Parallel simulation of incompressible viscous flows by generalized differential quadrature. Comput Syst Eng 3:271–281

    Article  Google Scholar 

  33. Shu C, Richards BE (1992) Application of generalized differential quadrature to solve two-dimensional incompressible Navier–Stokes equations. Int J Numer Methods Fluids 15:791–798

    Article  MATH  Google Scholar 

  34. Shu C, Chew YT (1997) Fourier expansion-based differential quadrature and its application to Helmholtz eigenvalue problems. Commun Numer Methods Eng 13:643–653

    Article  MathSciNet  MATH  Google Scholar 

  35. Shu C, Chew YT (1999) Solution of Helmholtz equation by differential quadrature method. Comput Methods Appl Mech Eng 175:203–212

    Article  MathSciNet  MATH  Google Scholar 

  36. Shu C, Chew YT, Richards BE (1995) Generalized differential-integral quadrature and their application to solve boundary layer equations. Int J Numer Methods Fluids 21:723–733

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu GR, Wu TY (2001) An application of the generalized differential quadrature rule in Blasius and Onsager equations. Int J Numer Methods Eng 52:1013–1027

    Article  MATH  Google Scholar 

  38. Girgin Z (2011) Solution of the Blasius and Sakiadis equation by generalized iterative differential quadrature method. Int J Numer Methods Biomed Eng 27(8):1225–1234

    Article  MATH  Google Scholar 

  39. Eftekhari SA, Jafari AA (2013) Numerical solution of general boundary layer problems by the method of differential quadrature. Sci Iran B 20(4):1278–1301

    Google Scholar 

  40. Koohkan MR, Attarnejad R, Nasseri M (2010) Time domain analysis of dam-reservoir interaction using coupled differential quadrature and finite difference methods. Eng Comput 27(2):280–294

    Article  MATH  Google Scholar 

  41. Eftekhari SA, Jafari AA (2014) A mixed modal-differential quadrature method for free and forced vibration of beams in contact with fluid. Meccanica 49:535–564

    Article  MathSciNet  MATH  Google Scholar 

  42. Eftekhari SA (2016) Pressure-based and potential-based mixed Ritz-differential quadrature formulations for free and forced vibration of Timoshenko beams in contact with fluid. Meccanica 51:179–210

    Article  MathSciNet  MATH  Google Scholar 

  43. Eftekhari SA (2016) Pressure-based and potential-based differential quadrature procedures for free vibration of circular plates in contact with fluid. Latin Am J Solids Struct 13:610–631

    Article  Google Scholar 

  44. Quan JR, Chang CT (1989) New insights in solving distributed system equations by the quadrature methods, Part I: analysis. Comput Chem Eng 13:779–788

    Article  Google Scholar 

  45. Han J-B, Liew KM (1999) Static analysis of Mindlin plates: the differential quadrature element method (DQEM). Comput Methods Appl Mech Eng 177:51–75

    Article  MATH  Google Scholar 

  46. Wu TY, Liu GR (2001) Free vibration analysis of circular plates with variable thickness by the generalized differential quadrature rule. Int J Solids Struct 38:7967–7980

    Article  MATH  Google Scholar 

  47. Wu TY, Wang YY, Liu GR (2002) Free vibration analysis of circular plates using generalized differential quadrature rule. Comput Methods Appl Mech Eng 191:5365–5380

    Article  MATH  Google Scholar 

  48. Jeong K-H, Kim K-J (2005) Hydroelastic vibration of a circular plate submerged in a bounded compressible fluid. J Sound Vib 283:153–172

    Article  Google Scholar 

  49. Myint-U T (1980) Partial differential equations of mathematical physics, 2nd edn. North-Holland, NY

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Eftekhari.

Additional information

Technical Editor: Kátia Lucchesi Cavalca Dedini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eftekhari, S.A. A differential quadrature procedure for free vibration of circular membranes backed by a cylindrical fluid-filled cavity. J Braz. Soc. Mech. Sci. Eng. 39, 1119–1137 (2017). https://doi.org/10.1007/s40430-016-0561-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0561-3

Keywords

Navigation