Skip to main content
Log in

Natural convection boundary layer flow due to gyrotactic microorganisms about a vertical cone in porous media saturated by a nanofluid

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The similarity solution for Darcy free convection about an isothermal vertical cone with fixed apex half angle, pointing downward in a nanofluid saturated porous medium, has been made. It is assumed that the medium contains gyrotactic microorganisms along with nanoparticles and the cone is subjected to concentration of nanoparticles and density of motile microorganisms. The effects of Brownian motion and thermophoresis are incorporated into the model for nanofluids. The governing partial differential equations are converted into nonlinear ordinary differential equations using unique similarity transformations. The effects of the governing parameters on the dimensionless quantities such as velocity, temperature, nanoparticle concentration, density of motile microorganisms, local Nusselt, local Sherwood and local density numbers for both nanoparticles, and motile microorganism density are explored. A comprehensive numerical computation is carried out for various values of the parameters that describe the flow characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

C :

Nanoparticle volume fraction

D :

Brownian diffusion coefficient

\( \bar{D} \) :

Thermophoretic diffusion coefficient

\( \tilde{D} \) :

Diffusivity of microorganisms

f :

Dimensionless stream function

g :

Acceleration due to gravity

k :

Thermal conductivity

K :

Permeability of porous medium

L b :

Bioconvection Lewis number

L e :

Lewis number

N :

Concentration of microorganisms

N b :

Brownian motion parameter

N r :

Buoyancy ratio

N t :

Thermophoresis parameter

Nn :

Density number of motile microorganisms

Nu :

Nusselt number

P :

Pressure

P e :

Bioconvection Péclet number

q m :

Surface mass flux

q n :

Surface motile microorganisms flux

q w :

Surface heat flux

R a :

Rayleigh number

R b :

Bioconvection Rayleigh number

S :

Dimensionless density of motile microorganisms

Sh :

Sherwood number

T :

Temperature

\( \hat{W} \) :

Constant maximum cell swimming speed

(u, v):

Velocity components of the fluid

(xy):

Coordinate axes

α :

Thermal diffusivity of porous media

ϕ :

Dimensionless nanoparticle volume fraction

β :

Volumetric expansion coefficient

θ :

Dimensionless temperature

η :

Similarity variable

(ρc)p :

Effective heat capacity of nanoparticle material

(ρc) f :

Heat capacity of the fluid

ρ f :

Density of the fluid

ρ p :

Nanoparticle mass density

τ :

Ratio between the effective heat capacity of the nanoparticle material and heat capacity of the fluid

μ :

Dynamic viscosity

γ:

Average volume of a microorganisms

ω :

Half angle of the cone

ϵ :

Porosity

σ :

Microorganisms concentration difference parameter

ψ:

Stream function

\( w \) :

Conditions at the surface

f :

Fluid

∞:

Conditions in the free stream

References

  1. Das SK, Choi SUS, Yu W, Pradeep T (2007) Nanofluids—science and technology. John Wiley & Sons Publishers, Hoboken

    Google Scholar 

  2. Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128:240–250

    Article  Google Scholar 

  3. Cheng Ching-Yang (2012) Natural convection boundary layer flow over a truncated cone in a porous medium saturated by a nanofluid. Int Commun Heat Mass Transf 39:231–235

    Article  Google Scholar 

  4. Khan WA, Pop I (2011) Free convection boundary layer flow past a horizontal flat plate embedded in a porous medium filled with a nanofluid. ASME J Heat Transf 133:094501–0945011

    Article  Google Scholar 

  5. Nield DA, Kuznetsov AV (2010) Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model. Transp Porous Media 81:409–422

    Article  MathSciNet  Google Scholar 

  6. Uddin MJ, Khan WA, Ismail AI (2012) MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heat boundary condition. PLoS One 7:1–8

    Google Scholar 

  7. Kakać S, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf 52:3187–3196

    Article  MATH  Google Scholar 

  8. Mahdy A, Ahmed SE (2012) Laminar free convection over a vertical wavy surface embedded in a porous medium saturated with a nanofluid. Transp Porous Med 91:423–435

    Article  MathSciNet  Google Scholar 

  9. Gorla RSR, Chamkha AJ (2011) Natural convective boundary layer flow over a horizontal plate embedded in a porous medium saturated with a nanofluid. J Mod Phys 2:62–71

    Article  Google Scholar 

  10. Behseresht A, Noghrehabadi A, Ghalambaz M (2014) Natural-convection heat and mass transfer from a vertical cone in porous media filled with nanofluids using the practical ranges of nanofluids thermo-physical properties. Chem Eng Res Des 92:447–452

    Article  Google Scholar 

  11. Anoop KB, Sundararajan T, Das SK (2009) Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int J Heat Mass Transf 52:2189–2195

    Article  MATH  Google Scholar 

  12. Nield DA, Kuznetsov AV (2009) The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int J Heat Mass Transf 52:5792–5795

    Article  MATH  Google Scholar 

  13. Kuznetsov AV (2011) Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: oscillatory instability. Nanoscale Res Lett 6(100):1–13

    Google Scholar 

  14. Aziz A, Khan WA, Pop I (2012) Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms. Int J Thermal Sci 56:48–57

    Article  Google Scholar 

  15. Tham L, Nazar R, Pop I (2013) Mixed convection flow over a solid sphere embedded in a porous medium filled by a nanofluid containing gyrotactic microorganisms Int. J Heat Mass Transf 62:647–660

    Article  Google Scholar 

  16. Mutuku WN, Oluwole DK (2014) Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms. Comput Fluids 95:88–97

    Article  MathSciNet  Google Scholar 

  17. Khan WA, Makinde OD (2014) MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet. Int. J. Thermal Sciences 81:118–124

    Article  Google Scholar 

  18. Khan WA, Uddin MJ, Ismail AI (2013) Free convection of non-Newtonian nanofluids in porous media with gyrotactic microorganisms. Transp Porous Med 97:241–252

    Article  MathSciNet  Google Scholar 

  19. Khan WA, Makinde OD, Khan ZH (2014) MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip. Int J Heat Mass Transf 74:285–291

    Article  Google Scholar 

  20. Kuznetsov AV (2011) Bio-thermal convection induced by two different species of microorganisms. Int Commun Heat Mass Transfer 38:548–553

    Article  Google Scholar 

  21. Mutuku WN, Makinde OD (2014) Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms. Comput Fluids 95:88–97

    Article  MathSciNet  Google Scholar 

  22. Kuznetsov AV (2006) The onset of thermo-bioconvection in a shallow fluid saturated porous layer heated from below in a suspension of oxytactic microorganisms. Eur J Mech B Fluids 25(2):223–233

    Article  MathSciNet  MATH  Google Scholar 

  23. Geng P, Kuznetsov AV (2005) Introducing the concept of effective diffusivity to evaluate the effect of bioconvection on small solid particles. Int J Transp Phenom 7:321–338

    Google Scholar 

  24. Avramenko AA, Kuznetsov AV (2004) Stability of a suspension of gyrotactic microorganisms in superimposed fluid and porous layers. Int Commun Heat Mass Transfer 31:1057–1066

    Article  Google Scholar 

  25. Hill NA, Pedley TJ, Kessler JO (1989) Growth of bioconvection patterns in a suspension of gyrotactic microorganisms in a layer of finite depth. J Fluid Mech 208:509–543

    Article  MathSciNet  MATH  Google Scholar 

  26. Ames WF (1965) Nonlinear partial differential equations. Academic Press, New York

    MATH  Google Scholar 

  27. Hillesdon AJ, Pedley TJ, Kessler JO (1995) The development of concentration gradients in a suspension of chemotactic bacteria. Bull Math Biol 57(299–303):305–344

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mahdy.

Additional information

Technical Editor: Francisco Ricardo Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdy, A. Natural convection boundary layer flow due to gyrotactic microorganisms about a vertical cone in porous media saturated by a nanofluid. J Braz. Soc. Mech. Sci. Eng. 38, 67–76 (2016). https://doi.org/10.1007/s40430-015-0313-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0313-9

Keywords

Navigation