Skip to main content
Log in

A Translation from Goal-Directed to Habitual Control: the Striatum in Drug Addiction

  • Neuroscience & Addiction (A Haghparast and H Ekhtiari, Section Editor)
  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Drug addiction starts from recreational drug use, gradually becomes habitual or even compulsive. However, after exposure to addictive drugs, only 20% of individuals finally fall into a vicious cycle of addiction. As the number of addicts worldwide increases year by year, the need for understanding the neural basis underlying addiction is in high demand.

Recent Findings

The intrastriatal functional shifts have been widely recognized to contribute to addiction development, where the nucleus accumbens permits the devolution of its control over behaviour to the dorsal striatum. In addition, compulsive drug seeking and taking have been taken as maladaptive habits, coupling with impaired goal-directed behaviour, thus habitual system dominant behaviour in spite of punishment. However, this hypothesis has not fully been proven at the level of neural mechanisms.

Summary

Here we elaborated the function of the striatum at the different stages of addiction within the associative learning theory framework to highlight the potentially vulnerable targets of addictive drugs. Furthermore, based on current findings, we proposed new possibilities to explain compulsive drug-seeking behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

N/A

Code Availability

N/A

References

  1. Cartoni E, Balleine B, Baldassarre G. Appetitive Pavlovian-instrumental Transfer: a review. Neurosci Biobehav Rev. 2016.https://doi.org/10.1016/j.neubiorev.2016.09.020.

  2. Morse AK, Leung BK, Heath E, Bertran-Gonzalez J, Pepin E, Chieng BC, et al. Basolateral amygdala drives a GPCR-mediated striatal memory necessary for predictive learning to influence choice. Neuron. 2020.https://doi.org/10.1016/j.neuron.2020.03.007.

  3. Garbusow M, Schad DJ, Sebold M, Friedel E, Bernhardt N, Koch SP, et al. Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence. Addict Biol. 2016.https://doi.org/10.1111/adb.12243.

  4. Mendelsohn A, Pine A, Schiller D. Between thoughts and actions: motivationally salient cues invigorate mental action in the human brain. Neuron. 2014.https://doi.org/10.1016/j.neuron.2013.10.019.

  5. Lüscher C, Robbins TW, Everitt BJ. The transition to compulsion in addiction. Nat Rev Neurosci. 2020.https://doi.org/10.1038/s41583-020-0289-z.

  6. Dalley JW, Everitt BJ, Robbins TW. Impulsivity, compulsivity, and top-down cognitive control. Neuron. 2011.https://doi.org/10.1016/j.neuron.2011.01.020.

  7. Everitt BJ, Robbins TW. Drug addiction: updating actions to habits to compulsions ten years on. Annu Rev Psychol. 2016.https://doi.org/10.1146/annurev-psych-122414-033457.

  8. Wolf ME. Synaptic mechanisms underlying persistent cocaine craving. Nat Rev Neurosci. 2016.https://doi.org/10.1038/nrn.2016.39.

  9. Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005.https://doi.org/10.1038/nn1579.

  10. Rescorla RA, Solomon RL. Two-process learning theory: relationships between Pavlovian conditioning and instrumental learning. Psychol Rev. 1967. https://doi.org/10.1037/h0024475.

  11. Yin HH, Ostlund SB, Balleine BW. Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks. Eur J Neurosci. 2008.https://doi.org/10.1111/j.1460-9568.2008.06422.x.

  12. Corbit LH, Balleine BW. Learning and motivational processes contributing to Pavlovian-instrumental transfer and their neural bases: dopamine and beyond. Curr Top Behav Neurosci. 2016. https://doi.org/10.1007/7854_2015_388.

    Article  PubMed  Google Scholar 

  13. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A. 1988. https://doi.org/10.1073/pnas.85.14.5274.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005. https://doi.org/10.1038/nn1578.

    Article  PubMed  Google Scholar 

  15. Maskos U, Molles BE, Pons S, Besson M, Guiard BP, Guilloux JP, et al. Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature. 2005. https://doi.org/10.1038/nature03694.

    Article  PubMed  Google Scholar 

  16. Johnson SW, North RA. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci. 1992. https://doi.org/10.1523/jneurosci.12-02-00483.1992.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Montague PR, Dayan P, Sejnowski TJ. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci. 1996. https://doi.org/10.1523/jneurosci.16-05-01936.1996.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998. https://doi.org/10.1152/jn.1998.80.1.1.

    Article  PubMed  Google Scholar 

  19. Mameli M, Lüscher C. Synaptic plasticity and addiction: learning mechanisms gone awry. Neuropharmacology. 2011. https://doi.org/10.1016/j.neuropharm.2011.01.036.

    Article  PubMed  Google Scholar 

  20. Heymann G, Jo YS, Reichard KL, McFarland N, Chavkin C, Palmiter RD, et al. Synergy of distinct dopamine projection populations in behavioral reinforcement. Neuron. 2020. https://doi.org/10.1016/j.neuron.2019.11.024.

    Article  PubMed  Google Scholar 

  21. Stuber GD, Sparta DR, Stamatakis AM, van Leeuwen WA, Hardjoprajitno JE, Cho S, et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature. 2011. https://doi.org/10.1038/nature10194.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rocha A, Kalivas PW. Role of the prefrontal cortex and nucleus accumbens in reinstating methamphetamine seeking. Eur J Neurosci. 2010. https://doi.org/10.1111/j.1460-9568.2010.07134.x.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhou Y, Zhu H, Liu Z, Chen X, Su X, Ma C, et al. A ventral CA1 to nucleus accumbens core engram circuit mediates conditioned place preference for cocaine. Nat Neurosci. 2019. https://doi.org/10.1038/s41593-019-0524-y.

    Article  PubMed  PubMed Central  Google Scholar 

  24. de Jong JW, Afjei SA, PollakDorocic I, Peck JR, Liu C, Kim CK, et al. A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron. 2019. https://doi.org/10.1016/j.neuron.2018.11.005.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Puaud M, Higuera-Matas A, Brunault P, Everitt BJ, Belin D. The basolateral amygdala to nucleus accumbens core circuit mediates the conditioned reinforcing effects of cocaine-paired cues on cocaine seeking. Biol Psychiat. 2021. https://doi.org/10.1016/j.biopsych.2020.07.022.

    Article  PubMed  Google Scholar 

  26. Alaghband Y, Kramár E, Kwapis JL, Kim ES, Hemstedt TJ, López AJ, et al. CREST in the nucleus accumbens core regulates cocaine conditioned place preference, cocaine-seeking behavior, and synaptic plasticity. J Neurosci. 2018. https://doi.org/10.1523/jneurosci.2911-17.2018.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ. Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J Neurosci. 2000. https://doi.org/10.1523/jneurosci.20-19-07489.2000.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zinsmaier AK, Dong Y, Huang YH. Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens. Mol Psychiatry. 2021. https://doi.org/10.1038/s41380-021-01112-2.

    Article  PubMed  Google Scholar 

  29. Corre J, van Zessen R, Loureiro M, Patriarchi T, Tian L, Pascoli V, et al. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. eLife. 2018; https://doi.org/10.7554/eLife.39945.

  30. Pontieri FE, Tanda G, Di Chiara G. Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc Natl Acad Sci U S A. 1995. https://doi.org/10.1073/pnas.92.26.12304.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jedynak J, Hearing M, Ingebretson A, Ebner SR, Kelly M, Fischer RA, et al. Cocaine and amphetamine induce overlapping but distinct patterns of AMPAR plasticity in nucleus accumbens medium spiny neurons. Neuropsychopharmacol. 2016. https://doi.org/10.1038/npp.2015.168.

    Article  Google Scholar 

  32. Ito R, Dalley JW, Robbins TW, Everitt BJ. Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J Neurosci. 2002. https://doi.org/10.1523/jneurosci.22-14-06247.2002.

    Article  PubMed  PubMed Central  Google Scholar 

  33. McGeorge AJ, Faull RL. The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience. 1989. https://doi.org/10.1016/0306-4522(89)90128-0.

    Article  PubMed  Google Scholar 

  34. Hintiryan H, Foster NN, Bowman I, Bay M, Song MY, Gou L, et al. The mouse cortico-striatal projectome. Nat Neurosci. 2016. https://doi.org/10.1038/nn.4332.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hilário MR, Costa RM. High on habits. Front Neurosci. 2008. https://doi.org/10.3389/neuro.01.030.2008.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Balleine BW, Liljeholm M, Ostlund SB. The integrative function of the basal ganglia in instrumental conditioning. Behav Brain Res. 2009. https://doi.org/10.1016/j.bbr.2008.10.034.

    Article  PubMed  Google Scholar 

  37. Gremel CM, Chancey JH, Atwood BK, Luo G, Neve R, Ramakrishnan C, et al. Endocannabinoid modulation of orbitostriatal circuits gates habit formation. Neuron. 2016. https://doi.org/10.1016/j.neuron.2016.04.043.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vandaele Y, Mahajan NR, Ottenheimer DJ, Richard JM, Mysore SP, Janak PH. Distinct recruitment of dorsomedial and dorsolateral striatum erodes with extended training. eLife. 2019; https://doi.org/10.7554/eLife.49536.

  39. Bergstrom HC, Lipkin AM, Lieberman AG, Pinard CR, Gunduz-Cinar O, Brockway ET, et al. Dorsolateral striatum engagement interferes with early discrimination learning. Cell Rep. 2018. https://doi.org/10.1016/j.celrep.2018.04.081.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kreitzer AC, Malenka RC. Striatal plasticity and basal ganglia circuit function. Neuron. 2008. https://doi.org/10.1016/j.neuron.2008.11.005.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li Y, He Y, Chen M, Pu Z, Chen L, Li P, et al. Optogenetic activation of adenosine A2A receptor signaling in the dorsomedial striatopallidal neurons suppresses goal-directed behavior. Neuropsychopharmacol. 2016. https://doi.org/10.1038/npp.2015.227.

    Article  Google Scholar 

  42. Furlong TM, Supit AS, Corbit LH, Killcross S, Balleine BW. Pulling habits out of rats: adenosine 2A receptor antagonism in dorsomedial striatum rescues meth-amphetamine-induced deficits in goal-directed action. Addict Biol. 2017. https://doi.org/10.1111/adb.12316.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Vicente AM, Galvão-Ferreira P, Tecuapetla F, Costa RM. Direct and indirect dorsolateral striatum pathways reinforce different action strategies. Curr Biol. 2016. https://doi.org/10.1016/j.cub.2016.02.036.

    Article  PubMed  PubMed Central  Google Scholar 

  44. O’Hare JK, Ade KK, Sukharnikova T, Van Hooser SD, Palmeri ML, Yin HH, et al. Pathway-specific striatal substrates for habitual behavior. Neuron. 2016. https://doi.org/10.1016/j.neuron.2015.12.032.

  45. Schmidt R, Leventhal DK, Mallet N, Chen F, Berke JD. Canceling actions involves a race between basal ganglia pathways. Nat Neurosci. 2013. https://doi.org/10.1038/nn.3456.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sjoerds Z, de Wit S, van den Brink W, Robbins TW, Beekman AT, Penninx BW, et al. Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients. Transl Psychiatry. 2013. https://doi.org/10.1038/tp.2013.107.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Corbit LH, Nie H, Janak PH. Habitual alcohol seeking: time course and the contribution of subregions of the dorsal striatum. Biol Psychiat. 2012. https://doi.org/10.1016/j.biopsych.2012.02.024.

    Article  PubMed  Google Scholar 

  48. Rogers RD, Everitt BJ, Baldacchino A, Blackshaw AJ, Swainson R, Wynne K, et al. Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacol. 1999. https://doi.org/10.1016/s0893-133x(98)00091-8.

    Article  Google Scholar 

  49. Bechara A, Dolan S, Denburg N, Hindes A, Anderson SW, Nathan PE. Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia. 2001. https://doi.org/10.1016/s0028-3932(00)00136-6.

    Article  PubMed  Google Scholar 

  50. Miller EK. The prefrontal cortex and cognitive control. Nat Rev Neurosci. 2000. https://doi.org/10.1038/35036228.

    Article  PubMed  Google Scholar 

  51. Loos M, Mueller T, Gouwenberg Y, Wijnands R, van der Loo RJ, Birchmeier C, et al. Neuregulin-3 in the mouse medial prefrontal cortex regulates impulsive action. Biol Psychiat. 2014. https://doi.org/10.1016/j.biopsych.2014.02.011.

    Article  PubMed  Google Scholar 

  52. Paine TA, O’Hara A, Plaut B, Lowes DC. Effects of disrupting medial prefrontal cortex GABA transmission on decision-making in a rodent gambling task. Psychopharmacology. 2015. https://doi.org/10.1007/s00213-014-3816-7.

  53. Narayanan NS, Laubach M. Inhibitory control: mapping medial frontal cortex. Curr Biol. 2017. https://doi.org/10.1016/j.cub.2017.01.010.

    Article  PubMed  Google Scholar 

  54. Ersche KD, Williams GB, Robbins TW, Bullmore ET. Meta-analysis of structural brain abnormalities associated with stimulant drug dependence and neuroimaging of addiction vulnerability and resilience. Curr Opin Neurobiol. 2013. https://doi.org/10.1016/j.conb.2013.02.017.

    Article  PubMed  Google Scholar 

  55. Chen BT, Yau HJ, Hatch C, Kusumoto-Yoshida I, Cho SL, Hopf FW, et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature. 2013. https://doi.org/10.1038/nature12024.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hu Y, Salmeron BJ, Krasnova IN, Gu H, Lu H, Bonci A, et al. Compulsive drug use is associated with imbalance of orbitofrontal- and prelimbic-striatal circuits in punishment-resistant individuals. Proc Natl Acad Sci U S A. 2019. https://doi.org/10.1073/pnas.1819978116.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pascoli V, Hiver A, Van Zessen R, Loureiro M, Achargui R, Harada M, et al. Stochastic synaptic plasticity underlying compulsion in a model of addiction. Nature. 2018. https://doi.org/10.1038/s41586-018-0789-4.

    Article  PubMed  Google Scholar 

  58. Pascoli V, Terrier J, Hiver A, Lüscher C. Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron. 2015. https://doi.org/10.1016/j.neuron.2015.10.017.

    Article  PubMed  Google Scholar 

  59. Sul JH, Kim H, Huh N, Lee D, Jung MW. Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making. Neuron. 2010. https://doi.org/10.1016/j.neuron.2010.03.033.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hirokawa J, Vaughan A, Masset P, Ott T, Kepecs A. Frontal cortex neuron types categorically encode single decision variables. Nature. 2019. https://doi.org/10.1038/s41586-019-1816-9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mihindou C, Guillem K, Navailles S, Vouillac C, Ahmed SH. Discriminative inhibitory control of cocaine seeking involves the prelimbic prefrontal cortex. Biol Psychiat. 2013. https://doi.org/10.1016/j.biopsych.2012.08.011.

    Article  PubMed  Google Scholar 

  62. Capuzzo G, Floresco SB. Prelimbic and infralimbic prefrontal regulation of active and inhibitory avoidance and reward-seeking. J Neurosci. 2020. https://doi.org/10.1523/jneurosci.0414-20.2020.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Nan Sui for guidance.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No.3197070674) and the National Natural Science Foundation of Beijing (Grant No. 7202128) to F.S., and CAS Key Laboratory of Mental Health, Institute of Psychology. The CAS-VPST Silk Road Science Fund 2021 to N.S.(Grant No. GJHZ202129).

Author information

Authors and Affiliations

Authors

Contributions

W.D. and F.S. wrote the paper. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Fang Shen.

Ethics declarations

Ethics Approval

N/A

Consent to Participate

All authors consent to participate.

Consent for Publication

All authors consent to the publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuroscience & Addiction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Liu, Y., Meng, Y. et al. A Translation from Goal-Directed to Habitual Control: the Striatum in Drug Addiction. Curr Addict Rep 8, 530–537 (2021). https://doi.org/10.1007/s40429-021-00392-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-021-00392-6

Keywords

Navigation