Skip to main content
Log in

Insight into the Potential Factors That Promote Tobacco Use in Vulnerable Populations

  • Tobacco (AH Weinberger, Section Editor)
  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

It is presently unclear why certain populations are more vulnerable to tobacco use and less responsive to smoking cessation interventions. This review considers the contribution of nicotine reward and withdrawal in populations that appear to be more susceptible to tobacco use. Our focus is on populations that have been modeled in rodents including, adolescents, females, and persons with metabolic disorders, such as diabetes. A common feature across these rodent models is heightened nicotine reward, suggesting that vulnerable populations may experience strong rewarding effects of nicotine that promote tobacco use. One distinguishing factor among these rodent models of at-risk populations is with regard to the magnitude of nicotine withdrawal, which is lower during adolescence. These groups also differ with regard to expression of the physical signs versus affective states produced by withdrawal, suggesting that these distinct facets of withdrawal differentially contribute to tobacco use in vulnerable populations. Thus, we may need to apply different diagnostic criteria and/or specialized treatments that target the unique factors that promote tobacco use in different vulnerable populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Goodwin AK, Hiranita T, Paule MG. The reinforcing effects of nicotine in humans and nonhuman primates: a review of intravenous self-administration evidence and future directions for research. Nicotine Tob Res. 2015;17(11):1297–310. doi:10.1093/ntr/ntv002.

    Article  PubMed  Google Scholar 

  2. Stolerman IP, Jarvis MJ. The scientific case that nicotine is addictive. Psychopharmacol (Berl). 1995;117(1):2–10.

    Article  CAS  Google Scholar 

  3. O'Dell LE, Khroyan TV. Rodent models of nicotine reward: what do they tell us about tobacco abuse in humans? Pharmacol Biochem Behav. 2009;91(4):481–8. doi:10.1016/j.pbb.2008.12.011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Hall FS, Der-Avakian A, Gould TJ, Markou A, Shoaib M, Young JW. Negative affective states and cognitive impairments in nicotine dependence. Neurosci Biobehav Rev. 2015. doi:10.1016/j.neubiorev.2015.06.004.

    Google Scholar 

  5. Watkins SS, Stinus L, Koob GF, Markou A. Reward and somatic changes during precipitated nicotine withdrawal in rats: centrally and peripherally mediated effects. J Pharmacol Exp Ther. 2000;292(3):1053–64.

    CAS  PubMed  Google Scholar 

  6. De Biasi M, Dani JA. Reward, addiction, withdrawal to nicotine. Annu Rev Neurosci. 2011;34:105–30. doi:10.1146/annurev-neuro-061010-113734.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Jackson KJ, Muldoon PP, De Biasi M, Damaj MI. New mechanisms and perspectives in nicotine withdrawal. Neuropharmacology. 2015;96(Pt B):223–34. doi:10.1016/j.neuropharm.2014.11.009. This article provides a comprehensive review on the neurobiological mechanisms of nicotine withdrawal and the neuroadaptative mechanisms influencing nicotine withdrawal, including sex, age and genetic factors.

    Article  CAS  PubMed  Google Scholar 

  8. Cohen A, Soleiman MT, Talia R, Koob GF, George O, Mandyam CD. Extended access nicotine self-administration with periodic deprivation increases immature neurons in the hippocampus. Psychopharmacol (Berl). 2015;232(2):453–63. doi:10.1007/s00213-014-3685-0.

    Article  CAS  Google Scholar 

  9. Silveri MM, Tzilos GK, Pimentel PJ, Yurgelun-Todd DA. Trajectories of adolescent emotional and cognitive development: effects of sex and risk for drug use. Ann N Y Acad Sci. 2004;1021:363–70.

    Article  PubMed  Google Scholar 

  10. Hussaini AE, Nicholson LM, Shera D, Stettler N, Kinsman S. Adolescent obesity as a risk factor for high-level nicotine addiction in young women. J Adolesc Health. 2011;49(5):511–7. doi:10.1016/j.jadohealth.2011.04.001.

    Article  PubMed  Google Scholar 

  11. Laviola G, Adriani W, Terranova ML, Gerra G. Psychobiological risk factors for vulnerability to psychostimulants in human adolescents and animal models. Neurosci Biobehav Rev. 1999;23(7):993–1010.

    Article  CAS  PubMed  Google Scholar 

  12. Eissenberg T, Balster RL. Initial tobacco use episodes in children and adolescents: current knowledge, future directions. Drug Alcohol Depend. 2000;59 Suppl 1:S41–60.

    Article  PubMed  Google Scholar 

  13. Pomerleau CS, Pomerleau OF, Namenek RJ, Marks JL. Initial exposure to nicotine in college-age women smokers and never-smokers: a replication and extension. J Addict Dis. 1999;18(3):13–9.

    Article  CAS  PubMed  Google Scholar 

  14. Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev. 2000;24(4):417–63.

    Article  CAS  PubMed  Google Scholar 

  15. Belluzzi JD, Lee AG, Oliff HS, Leslie FM. Age-dependent effects of nicotine on locomotor activity and conditioned place preference in rats. Psychopharmacol (Berl). 2004;174(3):389–95.

    Article  CAS  Google Scholar 

  16. Kota D, Martin BR, Robinson SE, Damaj MI. Nicotine dependence and reward differ between adolescent and adult male mice. J Pharmacol Exp Ther. 2007;322(1):399–407.

    Article  CAS  PubMed  Google Scholar 

  17. Lenoir M, Starosciak AK, Ledon J, Booth C, Zakharova E, Wade D, et al. Sex differences in conditioned nicotine reward are age-specific. Pharmacol Biochem Behav. 2015;132:56–62. doi:10.1016/j.pbb.2015.02.019.

    Article  CAS  PubMed  Google Scholar 

  18. Shram MJ, Funk D, Li Z, Lê AD. Periadolescent and adult rats respond differently in tests measuring the rewarding and aversive effects of nicotine. Psychopharmacol (Berl). 2006;186(2):201–8.

    Article  CAS  Google Scholar 

  19. Shram MJ, Lê AD. Adolescent male Wistar rats are more responsive than adult rats to the conditioned rewarding effects of intravenously administered nicotine in the place conditioning procedure. Behav Brain Res. 2010;206(2):240–4. doi:10.1016/j.bbr.2009.09.018.

    Article  CAS  PubMed  Google Scholar 

  20. Torres OV, Tejeda HA, Natividad LA, O'Dell LE. Enhanced vulnerability to the rewarding effects of nicotine during the adolescent period of development. Pharmacol Biochem Behav. 2008;90(4):658–63. doi:10.1016/j.pbb.2008.05.009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Torres OV, Natividad LA, Tejeda HA, Van Weelden SA, O'Dell LE. Female rats display dose-dependent differences to the rewarding and aversive effects of nicotine in an age-, hormone-, and sex-dependent manner. Psychopharmacol (Berl). 2009;206(2):303–12. doi:10.1007/s00213-009-1607-3.

    Article  CAS  Google Scholar 

  22. Vastola BJ, Douglas LA, Varlinskaya EI, Spear LP. Nicotine-induced conditioned place preference in adolescent and adult rats. Physiol Behav. 2002;77(1):107–14.

    Article  CAS  PubMed  Google Scholar 

  23. Chen H, Matta SG, Sharp BM. Acquisition of nicotine self-administration in adolescent rats given prolonged access to the drug. Neuropsychopharmacology. 2007;32(3):700–9.

    Article  CAS  PubMed  Google Scholar 

  24. Levin ED, Rezvani AH, Montoya D, Rose JE, Swartzwelder HS. Adolescent-onset nicotine self-administration modeled in female rats. Psychopharmacol (Berl). 2003;169(2):141–9.

    Article  CAS  Google Scholar 

  25. Levin ED, Lawrence SS, Petro A, Horton K, Rezvani AH, Seidler FJ, et al. Adolescent vs. adult-onset nicotine self-administration in male rats: duration of effect and differential nicotinic receptor correlates. Neurotoxicol Teratol. 2007;29(4):458–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Levin ED, Slade S, Wells C, Cauley M, Petro A, Vendittelli A, et al. Threshold of adulthood for the onset of nicotine self-administration in male and female rats. Behav Brain Res. 2011;225(2):473–81. doi:10.1016/j.bbr.2011.08.005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Natividad LA, Tejeda HA, Torres OV, O'Dell LE. Nicotine withdrawal produces a decrease in extracellular levels of dopamine in the nucleus accumbens that is lower in adolescent versus adult male rats. Synapse. 2010;64(2):136–45. doi:10.1002/syn.20713.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Nesil T, Kanit L, Collins AC, Pogun S. Individual differences in oral nicotine intake in rats. Neuropharmacology. 2011;61(1–2):189–201. doi:10.1016/j.neuropharm.2011.03.027.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Adriani W, Macrì S, Pacifici R, Laviola G. Peculiar vulnerability to nicotine oral self-administration in mice during early adolescence. Neuropsychopharmacology. 2002;27(2):212–24.

    Article  CAS  PubMed  Google Scholar 

  30. O'Dell LE, Torres OV, Natividad LA, Tejeda HA. Adolescent nicotine exposure produces less affective measures of withdrawal relative to adult nicotine exposure in male rats. Neurotoxicol Teratol. 2007;29(1):17–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Smith AE, Cavallo DA, Dahl T, Wu R, George TP, Krishnan-Sarin S. Effects of acute tobacco abstinence in adolescent smokers compared with nonsmokers. J Adolesc Health. 2008;43(1):46–54. doi:10.1016/j.jadohealth.2007.12.004.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Bailey SR, Crew EE, Riske EC, Ammerman S, Robinson TN, Killen JD. Efficacy and tolerability of pharmacotherapies to aid smoking cessation in adolescents. Paediatr Drugs. 2012;14(2):91–108. doi:10.2165/11594370-000000000-00000.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Grimshaw GM, Stanton A. Tobacco cessation interventions for young people. Cochrane Database Syst Rev. 2006;4, CD003289.

    PubMed  Google Scholar 

  34. Hanson K, Allen S, Jensen S, Hatsukami D. Treatment of adolescent smokers with the nicotine patch. Nicotine Tob Res. 2003;5(4):515–26.

    Article  PubMed  Google Scholar 

  35. Carpenter MJ, Saladin ME, Larowe SD, McClure EA, Simonian S, Upadhyaya HP, et al. Craving, cue reactivity, and stimulus control among early-stage young smokers: effects of smoking intensity and gender. Nicotine Tob Res. 2014;16(2):208–15. doi:10.1093/ntr/ntt147.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. O'Dell LE, Bruijnzeel AW, Smith RT, Parsons LH, Merves ML, Goldberger BA, et al. Diminished nicotine withdrawal in adolescent rats: implications for vulnerability to addiction. Psychopharmacol (Berl). 2006;186(4):612–9.

    Article  CAS  Google Scholar 

  37. Shram MJ, Siu EC, Li Z, Tyndale RF, Lê AD. Interactions between age and the aversive effects of nicotine withdrawal under mecamylamine-precipitated and spontaneous conditions in male Wistar rats. Psychopharmacol (Berl). 2008;198(2):181–90. doi:10.1007/s00213-008-1115-x.

    Article  CAS  Google Scholar 

  38. Kota D, Martin BR, Damaj MI. Age-dependent differences in nicotine reward and withdrawal in female mice. Psychopharmacol (Berl). 2008;198(2):201–10. doi:10.1007/s00213-008-1117-8.

    Article  CAS  Google Scholar 

  39. Wilmouth CE, Spear LP. Withdrawal from chronic nicotine in adolescent and adult rats. Pharmacol Biochem Behav. 2006;85(3):648–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Perkins KA, Doyle T, Ciccocioppo M, Conklin C, Sayette M, Caggiula A. Sex differences in the influence of nicotine dose instructions on the reinforcing and self-reported rewarding effects of smoking. Psychopharmacol (Berl). 2006;184(3–4):600–7.

    Article  CAS  Google Scholar 

  41. Perkins KA, Gerlach D, Vender J, Grobe J, Meeker J, Hutchison S. Sex differences in the subjective and reinforcing effects of visual and olfactory cigarette smoke stimuli. Nicotine Tob Res. 2001;3(2):141–50.

    Article  CAS  PubMed  Google Scholar 

  42. Zilberman M, Tavares H, El-Guebaly N. Gender similarities and differences: the prevalence and course of alcohol- and other substance-related disorders. J Addict Dis. 2003;22(4):61–74.

    Article  PubMed  Google Scholar 

  43. Edwards AW, Konz N, Hirsch Z, Weedon J, Dow-Edwards DL. Single trial nicotine conditioned place preference in pre-adolescent male and female rats. Pharmacol Biochem Behav. 2014;125:1–7. doi:10.1016/j.pbb.2014.07.016.

    Article  CAS  PubMed  Google Scholar 

  44. Chaudhri N, Caggiula AR, Donny EC, Booth S, Gharib MA, Craven LA, et al. Sex differences in the contribution of nicotine and nonpharmacological stimuli to nicotine self-administration in rats. Psychopharmacol (Berl). 2005;180(2):258–66.

    Article  CAS  Google Scholar 

  45. Donny EC, Caggiula AR, Rowell PP, Gharib MA, Maldovan V, Booth S, et al. Nicotine self-administration in rats: estrous cycle effects, sex differences and nicotinic receptor binding. Psychopharmacol (Berl). 2000;151(4):392–405.

    Article  CAS  Google Scholar 

  46. Feltenstein MW, Ghee SM, See RE. Nicotine self-administration and reinstatement of nicotine-seeking in male and female rats. Drug Alcohol Depend. 2012;121(3):240–6. doi:10.1016/j.drugalcdep.2011.09.001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Perkins KA, Giedgowd GE, Karelitz JL, Conklin CA, Lerman C. Smoking in response to negative mood in men versus women as a function of distress tolerance. Nicotine Tob Res. 2012;14(12):1418–25. doi:10.1093/ntr/nts075.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Piper ME, Cook JW, Schlam TR, Jorenby DE, Smith SS, Bolt DM, et al. Gender, race, and education differences in abstinence rates among participants in two randomized smoking cessation trials. Nicotine Tob Res. 2010;12(6):647–57. doi:10.1093/ntr/ntq067.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Perkins KA, Scott J. Sex differences in long-term smoking cessation rates due to nicotine patch. Nicotine Tob Res. 2008;10(7):1245–50. doi:10.1080/14622200802097506.

    Article  CAS  PubMed  Google Scholar 

  50. Schnoll RA, Patterson F, Lerman C. Treating tobacco dependence in women. J Womens Health (Larchmt). 2007;16(8):1211–8.

    Article  Google Scholar 

  51. Xu J, Azizian A, Monterosso J, Domier CP, Brody AL, Fong TW, et al. Gender effects on mood and cigarette craving during early abstinence and resumption of smoking. Nicotine Tob Res. 2008;10(11):1653–61. doi:10.1080/14622200802412929. Erratum in: Nicotine Tob Res. 2009 Jan;11(1):106.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Hogle JM, Curtin JJ. Sex differences in negative affective response during nicotine withdrawal. Psychophysiology. 2006;43(4):344–56.

    Article  PubMed  Google Scholar 

  53. O'Dell LE, Torres OV. A mechanistic hypothesis of the factors that enhance vulnerability to nicotine use in females. Neuropharmacology. 2014;76(Pt B):566–80. doi:10.1016/j.neuropharm.2013.04.055. This review proposes a hypothesis explaining how females experience greater rewarding effects of nicotine and more intense stress produced by withdrawal than males.

    Article  PubMed  CAS  Google Scholar 

  54. Gentile NE, Andrekanic JD, Karwoski TE, Czambel RK, Rubin RT, Rhodes ME. Sexually diergic hypothalamic-pituitary-adrenal (HPA) responses to single-dose nicotine, continuous nicotine infusion, and nicotine withdrawal by mecamylamine in rats. Brain Res Bull. 2011;85(3–4):145–52. doi:10.1016/j.brainresbull.2011.03.001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Skwara AJ, Karwoski TE, Czambel RK, Rubin RT, Rhodes ME. Influence of environmental enrichment on hypothalamic-pituitary-adrenal (HPA) responses to single-dose nicotine, continuous nicotine by osmotic mini-pumps, and nicotine withdrawal by mecamylamine in male and female rats. Behav Brain Res. 2012;234(1):1–10. doi:10.1016/j.bbr.2012.06.003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Torres OV, Gentil LG, Natividad LA, Carcoba LM, O'Dell LE. Behavioral, biochemical, and molecular indices of stress are enhanced in female versus male rats experiencing nicotine withdrawal. Front Psychiatry. 2013;4:38. doi:10.3389/fpsyt.2013.00038.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Torres OV, Pipkin JA, Ferree P, Carcoba LM, O'Dell LE. Nicotine withdrawal increases stress-associated genes in the nucleus accumbens of female rats in a hormone-dependent manner. Nicotine Tob Res. 2015;17(4):422–30. doi:10.1093/ntr/ntu278.

    Article  PubMed  Google Scholar 

  58. Scaramuzza A, De Palma A, Mameli C, Spiri D, Santoro L, Zuccotti GV. Adolescents with type 1 diabetes and risky behaviour. Acta Paediatr. 2010;99(8):1237–41. doi:10.1111/j.1651-2227.2010.01813.x.

    Article  PubMed  Google Scholar 

  59. Bishop FK, Maahs DM, Snell-Bergeon JK, Ogden LG, Kinney GL, Rewers M. Lifestyle risk factors for atherosclerosis in adults with type 1 diabetes. Diab Vasc Dis Res. 2009;6(4):269–75. doi:10.1177/1479164109346359.

    Article  PubMed  Google Scholar 

  60. Fan AZ, Rock V, Zhang X, Li Y, Elam-Evans L, Balluz L. Trends in cigarette smoking rates and quit attempts among adults with and without diagnosed diabetes, United States, 2001–2010. Prev Chronic Dis. 2013;10, E160. doi:10.5888/pcd10.120259.

    Article  PubMed Central  PubMed  Google Scholar 

  61. de Artiñano A, Castro M. Experimental rat models to study the metabolic syndrome. Br J Nutr. 2009;102(9):1246–53. doi:10.1017/S0007114509990729.

    Article  CAS  Google Scholar 

  62. O'Dell LE, Natividad LA, Pipkin JA, Roman F, Torres I, Jurado J, et al. Enhanced nicotine self-administration and suppressed dopaminergic systems in a rat model of diabetes. Addict Biol. 2014;19(6):1006–19. doi:10.1111/adb.12074.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Richardson JR, Pipkin JA, O'Dell LE, Nazarian A. Insulin resistant rats display enhanced rewarding effects of nicotine. Drug Alcohol Depend. 2014;140:205–7. doi:10.1016/j.drugalcdep.2014.03.028.

    Article  CAS  PubMed  Google Scholar 

  64. Blendy JA, Strasser A, Walters CL, Perkins KA, Patterson F, Berkowitz R, et al. Reduced nicotine reward in obesity: cross-comparison in human and mouse. Psychopharmacol (Berl). 2005;180(2):306–15.

    Article  CAS  Google Scholar 

  65. Eliasson B, Smith U, Lönnroth P. No acute effects of smoking and nicotine nasal spray on lipolysis measured by subcutaneous microdialysis. Eur J Clin Investig. 1997;27(6):503–9.

    Article  CAS  Google Scholar 

  66. Haire-Joshu D, Heady S, Thomas L, Schechtman K, Fisher Jr EB. Depressive symptomatology and smoking among persons with diabetes. Res Nurs Health. 1994;17(4):273–82.

    Article  CAS  PubMed  Google Scholar 

  67. Spangler JG, Michielutte R, Bell RA, Knick S, Dignan MB, Summerson JH. Dual tobacco use among Native American adults in southeastern North Carolina. Prev Med. 2001;32(6):521–8.

    Article  CAS  PubMed  Google Scholar 

  68. Lydon DM, Wilson SJ, Child A, Geier CF. Adolescent brain maturation and smoking: what we know and where we're headed. Neurosci Biobehav Rev. 2014;45:323–42. doi:10.1016/j.neubiorev.2014.07.003.

    Article  PubMed Central  PubMed  Google Scholar 

  69. O'Dell LE. A psychobiological framework of the substrates that mediate nicotine use during adolescence. Neuropharmacology. 2009;56 Suppl 1:263–78. doi:10.1016/j.neuropharm.2008.07.039.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. O'Dell LE. NICO-TEEN: neural substrates that mediate adolescent tobacco abuse. Neuropsychopharmacology. 2011;36(1):356–7. doi:10.1038/npp.2010.138.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Tyas SL, Pederson LL. Psychosocial factors related to adolescent smoking: a critical review of the literature. Tob Control. 1998;7(4):409–20. Review.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Carroll ME, Anker JJ. Sex differences and ovarian hormones in animal models of drug dependence. Horm Behav. 2010;58(1):44–56. doi:10.1016/j.yhbeh.2009.10.001.

    Article  CAS  PubMed  Google Scholar 

  73. Becker JB, Perry AN, Westenbroek C. Sex differences in the neural mechanisms mediating addiction: a new synthesis and hypothesis. Biol Sex Differ. 2012;3(1):14. doi:10.1186/2042-6410-3-14.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Eliasson B. Cigarette smoking and diabetes. Prog Cardiovasc Dis. 2003;45(5):405–13.

    Article  CAS  PubMed  Google Scholar 

  75. O'Dell LE, Nazarian A. Enhanced vulnerability to tobacco use in persons with diabetes: a behavioral and neurobiological framework. Prog Neuropsychopharmacol Biol Psychiatry. 2015. doi:10.1016/j.pnpbp.2015.06.005.

    Google Scholar 

  76. Tonstad S. Practical implementation of varenicline as an aid to smoking cessation in clinical practice. Pneumologia. 2009;58(3):167–74.

    PubMed  Google Scholar 

  77. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–38. doi:10.1038/npp.2009.110. Erratum in: Neuropsychopharmacology. 2010 Mar;35(4):1051.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Balfour DJ. Neuroplasticity within the mesoaccumbens dopamine system and its role in tobacco dependence. Curr Drug Targets CNS Neurol Disord. 2002;1(4):413–21.

    Article  CAS  PubMed  Google Scholar 

  79. Mansvelder HD, De Rover M, McGehee DS, Brussaard AB. Cholinergic modulation of dopaminergic reward areas: upstream and downstream targets of nicotine addiction. Eur J Pharmacol. 2003;480(1–3):117–23.

    Article  CAS  PubMed  Google Scholar 

  80. Hildebrand BE, Nomikos GG, Hertel P, Schilström B, Svensson TH. Reduced dopamine output in the nucleus accumbens but not in the medial prefrontal cortex in rats displaying a mecamylamine-precipitated nicotine withdrawal syndrome. Brain Res. 1998;779(1–2):214–25.

    Article  CAS  PubMed  Google Scholar 

  81. Rada P, Jensen K, Hoebel BG. Effects of nicotine and mecamylamine-induced withdrawal on extracellular dopamine and acetylcholine in the rat nucleus accumbens. Psychopharmacol (Berl). 2001;157(1):105–10.

    Article  CAS  Google Scholar 

  82. Zhang L, Dong Y, Doyon WM, Dani JA. Withdrawal from chronic nicotine exposure alters dopamine signaling dynamics in the nucleus accumbens. Biol Psychiatry. 2012;71(3):184–91. doi:10.1016/j.biopsych.2011.07.024.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Natividad LA, Buczynski MW, Parsons LH, Torres OV, O'Dell LE. Adolescent rats are resistant to adaptations in excitatory and inhibitory mechanisms that modulate mesolimbic dopamine during nicotine withdrawal. J Neurochem. 2012;123(4):578–88. doi:10.1111/j.1471-4159.2012.07926.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Tejeda HA, Natividad LA, Orfila JE, Torres OV, O'Dell LE. Dysregulation of kappa-opioid receptor systems by chronic nicotine modulate the nicotine withdrawal syndrome in an age-dependent manner. Psychopharmacol (Berl). 2012;224(2):289–301. doi:10.1007/s00213-012-2752-7.

    Article  CAS  Google Scholar 

  85. Carcoba LM, Orfila JE, Natividad LA, Torres OV, Pipkin JA, Ferree PL, et al. Cholinergic transmission during nicotine withdrawal is influenced by age and pre-exposure to nicotine: implications for teenage smoking. Dev Neurosci. 2014;36(3–4):347–55. doi:10.1159/000360133.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Lemos JC, Wanat MJ, Smith JS, Reyes BA, Hollon NG, Van Bockstaele EJ, et al. Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive. Nature. 2012;490(7420):402–6. doi:10.1038/nature11436.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Beckstead MJ, Gantz SC, Ford CP, Stenzel-Poore MP, Phillips PE, Mark GP, et al. CRF enhancement of GIRK channel-mediated transmission in dopamine neurons. Neuropsychopharmacology. 2009;34(8):1926–35. doi:10.1038/npp.2009.25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Bangasser DA, Curtis A, Reyes BA, Bethea TT, Parastatidis I, Ischiropoulos H, et al. Sex differences in corticotropin-releasing factor receptor signaling and trafficking: potential role in female vulnerability to stress-related psychopathology. Mol Psychiatry. 2010;15(9):877. doi:10.1038/mp.2010.66. 896–904.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Valentino RJ, Van Bockstaele E, Bangasser D. Sex-specific cell signaling: the corticotropin-releasing factor receptor model. Trends Pharmacol Sci. 2013;34(8):437–44. doi:10.1016/j.tips.2013.06.004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Lim DK, Lee KM, Ho IK. Changes in the central dopaminergic systems in the streptozotocin-induced diabetic rats. Arch Pharm Res. 1994;17(6):398–404.

    Article  CAS  PubMed  Google Scholar 

  91. Murzi E, Contreras Q, Teneud L, Valecillos B, Parada MA, De Parada MP, et al. Diabetes decreases limbic extracellular dopamine in rats. Neurosci Lett. 1996;202(3):141–4.

    Article  CAS  PubMed  Google Scholar 

  92. Owens WA, Sevak RJ, Galici R, Chang X, Javors MA, Galli A, et al. Deficits in dopamine clearance and locomotion in hypoinsulinemic rats unmask novel modulation of dopamine transporters by amphetamine. J Neurochem. 2005;94(5):1402–10.

    Article  CAS  PubMed  Google Scholar 

  93. Saller CF. Dopaminergic activity is reduced in diabetic rats. Neurosci Lett. 1984;49(3):301–6.

    Article  CAS  PubMed  Google Scholar 

  94. Williams JM, Owens WA, Turner GH, Saunders C, Dipace C, Blakely RD, et al. Hypoinsulinemia regulates amphetamine-induced reverse transport of dopamine. PLoS Biol. 2007;5(10), e274.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. Baldwin PR, Alanis R, Salas R. The role of the habenula in nicotine addiction. J Addict Res Ther. 2011 Oct 20;S1(2). A theoretical paper that addresses how certain drugs that alter neuronal activity in the habenula may be effective therapies against tobacco use and drug addiction.

  96. Frahm S, Slimak MA, Ferrarese L, Santos-Torres J, Antolin-Fontes B, Auer S, et al. Aversion to nicotine is regulated by the balanced activity of β4 and α5 nicotinic receptor subunits in the medial habenula. Neuron. 2011;70(3):522–35. doi:10.1016/j.neuron.2011.04.013.

    Article  CAS  PubMed  Google Scholar 

  97. Salas R, Sturm R, Boulter J, De Biasi M. Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. J Neurosci. 2009;29(10):3014–8. doi:10.1523/JNEUROSCI.4934-08.2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Zhao-Shea R, DeGroot SR, Liu L, Vallaster M, Pang X, Su Q, Gao G, Rando OJ, Martin GE, George O, Gardner PD, Tapper AR. Increased CRF signalling in a ventral tegmental area-interpeduncular nucleus-medial habenula circuit induces anxiety during nicotine withdrawal. Nat Commun. 2015 Apr 21;6:6770. doi: 10.1038/ncomms7770. Erratum in: Nat Commun. 2015;6:7625. This study identified a mesointerpeduncular circuit as a potential source of CRF that may play an important role in modulating anxiety produced by nicotine withdrawal.

  99. Dani JA, De Biasi M. Mesolimbic dopamine and habenulo-interpeduncular pathways in nicotine withdrawal. Cold Spring Harb Perspect Med. 2013 Jun 1;3(6). pii: a012138. doi: 10.1101/cshperspect.a012138. A detailed overview of the habenula-interpeduncular (Hb-IPN) pathway as an important circuit that plays a critical role in modulating the behavioral effects of nicotine and withdrawal from this drug.

  100. Jackson KJ, Martin BR, Changeux JP, Damaj MI. Differential role of nicotinic acetylcholine receptor subunits in physical and affective nicotine withdrawal signs. J Pharmacol Exp Ther. 2008;325(1):302–12. doi:10.1124/jpet.107.132977.

    Article  CAS  PubMed  Google Scholar 

  101. Jackson KJ, McIntosh JM, Brunzell DH, Sanjakdar SS, Damaj MI. The role of alpha6-containing nicotinic acetylcholine receptors in nicotine reward and withdrawal. J Pharmacol Exp Ther. 2009;331(2):547–54. doi:10.1124/jpet.109.155457.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Modianos DT, Hitt JC, Flexman J. Habenular lesions produce decrements in feminine, but not masculine, sexual behavior in rats. Behav Biol. 1974;10(1):75–87.

    Article  CAS  PubMed  Google Scholar 

  103. Simerly RB, Chang C, Muramatsu M, Swanson LW. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J Comp Neurol. 1990;294(1):76–95.

    Article  CAS  PubMed  Google Scholar 

  104. Antolin-Fontes B, Ables JL, Görlich A, Ibañez-Tallon I. The habenulo-interpeduncular pathway in nicotine aversion and withdrawal. Neuropharmacology. 2015;96(Pt B):213–22. doi:10.1016/j.neuropharm.2014.11.019. This review describes the anatomical and functional connections of the MHb-IPN pathway and the contribution of specific nAChRs subtypes in this pathway in modulating nicotine-induced behavioral effects.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Bryan Cruz, Rodolfo Flores, and Kevin Uribe for their helpful comments in the preparation of this review paper. The authors also appreciate the support that was provided from The National Institute on Drug Abuse (R01-DA021274, R15-DA040130, R24-DA029989, and R25-DA033613) and the National Institute of Minority Health Disparities (G12MD007592) as part of the UTEP Border Biomedical Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura E. O’Dell.

Ethics declarations

Conflict of Interest

Luis M. Carcoba, Oscar V. Torres, Joseph A. Pipkin, Tiahna Ontiveros, and Laura E. O’Dell declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Tobacco

Drs. Luis M. Carcoba and Oscar V. Torres contributed equally to the development of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carcoba, L.M., Torres, O.V., Pipkin, J.A. et al. Insight into the Potential Factors That Promote Tobacco Use in Vulnerable Populations. Curr Addict Rep 3, 27–36 (2016). https://doi.org/10.1007/s40429-016-0091-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-016-0091-1

Keywords

Navigation