Skip to main content
Log in

Measuring productivity of a palm species: a proposal to standardize fruit quantification methods

  • Ecology & Biogeography - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Fruit productivity of plant populations is an important variable in phenological and demographic studies, partly because it involves the quantification of total fruit production per infructescence (TFP). Therefore, a standardized fruit quantification method allows for comparisons between different studies. In this paper, we describe a reliable method to quantify TFP of Euterpe edulis Mart, a key stone species which provides great number of fruits to the frugivore assembly through the whole year. A total of 28 infructescences were collected: 10 in Restinga de Jurubatiba National Park and 18 in Serra dos Órgãos National Park, both in Rio de Janeiro, Brazil. Guided by procedures already described in previews studies, three metrics to compose a standardized method to estimate TFP were formulated. Based on a generalized linear mixed model (GLMM) selection to assess the best variables to estimate TFP, a fourth metric was formulated. Finally, the four following metrics were studied: TFPc (manual counting all fruits); TFPm (total fruit mass divided by mean fruit mass); TFPr (mean fruit produced per rachilla multiplied by number of rachillae); and TFPd (function of the best fitted GLMM). Low coefficients of variation highlight that fruit mass has a good repeatability within fruits produced by one infructescence, unlike the number of fruits produced by rachillae. Furthermore, TFPm has accurate and precise results when compared to the real TFP, and the low sampling effort demanded by this metric makes it ideal to integrate a standardized method to quantify the fruit production and be replicated in several habitat types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The pulp of fruits from infructescences collected at RJ were already attacked by fungi by the time we begun processing the material. In this case, we were able to count the fruits and test the other metrics, but as the fruit mass was compromised, we could not test TFPm using the infructescences harvested at RJ.

References

  • Akaike H (1987) Factor analysis and AIC. Psychometrika 52:371–386

    Article  Google Scholar 

  • Bai W, Sun X, Wang Z, Li L (2009) Nitrogen addition and rhizome severing modify clonal growth and reproductive modes of Leymus chinensis population. Plant Ecol 205:13–21. https://doi.org/10.1007/S11258-009-9595-2

    Article  Google Scholar 

  • Calvi GP, Piña-rodrigues FCM (2005) Fenologia e reproduçãode sementes de Euterpe edulis—Mart em trecho de floresta de altitude no município de Miguel Pereira—RJ. Rev Univ Rural 25:33–40

    Google Scholar 

  • Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science (1979) 230:895–899. https://doi.org/10.1126/SCIENCE.230.4728.895

    Article  CAS  Google Scholar 

  • da Silva JZ, dos Reis MS (2018) Fenologia reprodutiva e produção de frutos em Euterpe edulis (Martius). Ciencia Florestal 28:295–309. https://doi.org/10.5902/1980509831655

    Article  Google Scholar 

  • Danner M, Raseira M, Sasso S, Svariot ICS (2010) Repetibilidade de caracteres de fruto em araçazeiro e pitangueira. Ciência Rural 40:2086–2091

    Article  Google Scholar 

  • de Souza A, Prevedello JA (2019) Geographic distribution of the threatened palm Euterpe edulis Mart. in the Atlantic forest: implications for conservation. Oecol Aust 23:636–643. https://doi.org/10.4257/oeco.2019.2303.19

    Article  Google Scholar 

  • de Souza AC, Prevedello JA (2020) The importance of protected areas for overexploited plants: evidence from a biodiversity hotspot. Biol Conserv. https://doi.org/10.1016/j.biocon.2020.108482

    Article  Google Scholar 

  • de Mello T, Rosa TLM, Simões IM et al (2022) Reserve mobilization and in vitro germination of Euterpe edulis (Martius) seeds at different maturation stages. Trees Struct Funct 36:415–426. https://doi.org/10.1007/S00468-021-02216-6/FIGURES/8

    Article  Google Scholar 

  • de Souza AC, Portela RCQ, de Mattos EA (2018) Demographic processes limit upward altitudinal range expansion in a threatened tropical palm. Ecol Evol 8:12238–12249. https://doi.org/10.1002/ECE3.4686

    Article  PubMed  PubMed Central  Google Scholar 

  • Fornazzari IM (2011) Avaliação dos estádios de maturação dos frutos da palmeira Euterpe edulis Martius. Universidade Estadual de Ponta Grossa

    Google Scholar 

  • Galetti M, Guevara R, Côrtes MC et al (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science (1979) 340:1086–1090. https://doi.org/10.1126/science.1233774

    Article  CAS  Google Scholar 

  • Gatti MG, Campanello PI, Goldstein G (2011) Growth and leaf production in the tropical palm Euterpe edulis: light conditions versus developmental constraints. Flora Morphol Distrib Funct Ecol Plants 206:742–748. https://doi.org/10.1016/j.flora.2011.04.004

    Article  Google Scholar 

  • Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–774

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni JJ (2007) Fruit ripening and its manipulation. In: Gan S (ed) Annual plant reviews, senescence processes in plants. Blackwell, pp 278–303

    Chapter  Google Scholar 

  • Gotelli N, Ellison A (2004) A primer of ecological statistics. Sinauer Associates, Sunderland

    Google Scholar 

  • Harper JL (1981) Population biology of plants. Academic Press, London

    Google Scholar 

  • Heidaryan E (2019) A note on model selection based on the percentage of accuracy-precision. J Energy Resour Technol Trans ASME. https://doi.org/10.1115/1.4041844/368236

    Article  Google Scholar 

  • Henderson A (2000) The genus Euterpe in Brazil. Sellowia 49:1–22

    Google Scholar 

  • Henery ML, Westoby M (2001) Seed mass and seed nutrient content as predictors of seed output variation between species. Oikos 92:479–490. https://doi.org/10.1034/J.1600-0706.2001.920309.X

    Article  Google Scholar 

  • Henriques RPB, Araújo DSD, Hay JD (1986) Descrição e classificação dos tipos de vegetação da restinga de Carapebús. Rev Bras Bot 9:173–189

    Google Scholar 

  • Laps RR (1996) Frugivoria e dispersão de sementes de palmiteiro (Euterpe eduls, Martius, Arecaceae) na Mata Atlântica, sul do estado de São Paulo. UNICAMP

    Google Scholar 

  • Lei SA (2010) Benefits and costs of vegetative and sexual reproduction in perennial plants: a review of literature. J Ariz Nev Acad Sci 42:9–14. https://doi.org/10.2181/036.042.0103

    Article  Google Scholar 

  • Lorenzi H, Noblick LR, Kahn F, Ferreira E (2010) Flora Brasileira: arecaceae (Palmeiras). Instituto Plantarum de Estudos da Flora, Nova Odessa

    Google Scholar 

  • Mangnusson A, Skaug H, Nielsen A, et al (2017) Package “glmmtmb.” cran.microsoft.com

  • Mantovani A, Morellato P (2000) Fenologia da floração, frutificação, mudança foliar e aspectos da biologia floral. Sellowia 49:23

    Google Scholar 

  • Martinelli G, Moraes MA (2013) Livro vermelho da flora do Brasil, 1st edn. CNCFLORA, Rio de Janeiro

    Google Scholar 

  • Newell KM, Hancock PA (1984) Forgotten moments: a note on skewness and kurtosis as influential factors in inferences extrapolated from response distributions. J Mot Behav 16:320–335. https://doi.org/10.1080/00222895.1984.10735324

    Article  CAS  PubMed  Google Scholar 

  • Niklas KJ (1994) Plant allometry: the scaling of form and process. University of Chicago Press

    Google Scholar 

  • Oliveira MdSP, da Fernandes GLC (2001) Repetibilidade de caracteres do cacho de açaizeiro nas condições de Belém-PA. Rev Bras Frutic 23:613–616

    Article  Google Scholar 

  • Oliveira MDSPd, Lemos MA, dos Santos VF, dos Santos EO (2000) Correlações fenotípicas entre caracteres vegetativos e de produção de frutos em açaizeiro. Rev Bras Frutic 22:01–05

    Google Scholar 

  • Portela RCQ, Pires AS, Braz MIG, de Mattos EA (2016) Species richness and density evaluation for plants with aggregated distributions: fixed vs. variable. J Plant Ecol. https://doi.org/10.1093/jpe/rtw085

    Article  Google Scholar 

  • Primack RB (1987) Relationships among flowers, fruits, and seeds. Ann Rev Ecol Sysl 18:409–439

    Article  Google Scholar 

  • R Core Team (2020) The R Project for Statistical Computing

  • Reis A (1995) Dispersão de sementes de Euterpe edulis Matius—(Palmae) em uma floresta ombrófila densa montana da encosta atlântica em Blumenau, SC. UNICAMP

    Google Scholar 

  • Sattler D, Lindner A, Morawetz W (2007) A função da sazonalidade no levantamento estrutural de uma floresta montana tropical no Rio de Janeiro, Brasil—the role of seasonality in structural. Ciência e Conservação na Serra dos Órgãos. https://www1.icmbio.gov.br/parnaserradosorgaos/images/stories/Satller_et_al_2007.pdf. Accessed 17 Apr 2021

  • Silva-Matos DM, Watkinson AR (1998) The fecundity, seed, and seedling ecology of the edible palm Euferpe edulis in Southeastern Brazil’. Biotropica 30:595–603

    Article  Google Scholar 

  • Souza LR (2019) Composição e diversidade de espécies lenhosas em fisionomias florestais na transição Cerrado-Floresta Atlântica. UFMT

    Google Scholar 

  • Trevisan ACD, Abreu AM, Nicolau VR et al (2019) Quintais agroflorestais para produção de frutos de Juçara em Santa Catarina. Rev Bras Agroecol 14:102–112

    Google Scholar 

  • Watkinson AR (1988) On the growth and reproductive schedules of plants: a modular viewpoint. Oecol Plant 9:67–81

    Google Scholar 

  • Wickham H (2011) ggplot2. Wiley Interdiscip Rev Comput Stat 3:180–185. https://doi.org/10.1002/WICS.147

    Article  Google Scholar 

  • Yang YY, Kim JG (2016) The optimal balance between sexual and asexual reproduction in variable environments: a systematic review. J Ecol Environ 40:1–18

    Google Scholar 

  • Zhou Z, Li Y, Song J et al (2019) Growth controls over flowering phenology response to climate change in three temperate steppes along a precipitation gradient. Agric For Meteorol 274:51–60. https://doi.org/10.1016/j.agrformet.2019.04.011

    Article  Google Scholar 

Download references

Acknowledgements

We thank Camila de Barros for helping us with the GLMMs and Verônica Marques and Adilson Pintor for helping us with fieldwork. We would like to thank the Long-term Research Program (Programa de Pesquisa de Longa Duração PELD—CNPq) Finance Code 441589/2016-2, for funding the entire project, and Professor Marcus Vinicius Vieira (PELD Coordinator) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

GG collected and processed the material and performed data sampling and analyses. GG and RCQP contributed to writing the manuscript.

Corresponding author

Correspondence to Guilherme Gama.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 700 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gama, G., Portela, R.d.C.Q. Measuring productivity of a palm species: a proposal to standardize fruit quantification methods. Braz. J. Bot 46, 731–741 (2023). https://doi.org/10.1007/s40415-023-00903-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-023-00903-x

Keywords

Navigation