Skip to main content

Advertisement

Log in

Direct seeding of native fruit tree species with economic benefits in a Brazilian Cerrado managed landscape

  • Ecology & Biogeography - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Planting native species of economic interest is attractive to ecological restoration and biodiversity conservation because of their potential to generate income, products and services, combining socioeconomic and environmental demands. Direct seeding is a low-cost restoration technique compared to nursery-raised seedling planting, but there is still a lack of information about restoration success in different savanna habitat types in Brazil. We tested direct seeding of six fruit tree species of the Brazilian Cerrado in a landscape compressed by five management regimes used by traditional farmers in a rural settlement in northern Minas Gerais State, Southeastern Brazil. We monitored germination, survival, growth and establishment for three years. Of the 9000 seeds planted, 18.7% germinated, 29.8% survived and 8.9% were established three years after sowing. Eugenia dysenterica (Mart.) DC. and Dypterix alata Vogel had higher germination, survival and establishment rates and are, thus, the most appropriate species. E. dysenterica showed high rates on native and managed Cerrado and D. alata in agroforestry system, hillside fields and lower field. The species studied are well adapted to conditions of water scarcity and low soil fertility. However, phosphorus concentration may be a limiting factor to species growth. Our results suggest that direct seeding of fruit tree species of the Cerrado is promising to some species, and to others, the sowing should be done with more seeds, or using nursery-raised seedling. The planting of fruit trees could be a practice that allow smallholders farmers to increase biodiversity at the same time that could contribute to their livelihoods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The procedures were learned between 2012 and 2015, when the main author and members of her team spent an average of ten days every two months in Americana Agroextractive Settlement, conducting fieldwork and participating in many aspects of daily life, including harvesting, processing, and planting native fruits, and attending community meetings.

References

  • Almeida SP, Proença CEB, Sano SM, Ribeiro JF (1998) Cerrado: espécies vegetais úteis. Empresa Brasileira de Pesquisa Agropecuária, Centro de Pesquisa Agropecuária dos Cerrados, Brasília

    Google Scholar 

  • Assis LFFG, Ferreira KR, Vinhas L et al (2019) TerraBrasilis: a spatial data analytics infrastructure for large-scale thematic mapping. ISPRS Int J Geo-Inform 8:513

    Article  Google Scholar 

  • Balandier P, Frochot H, Sourisseau A (2009) Improvement of direct tree seeding with cover crops in afforestation: microclimate and resource availability induced by vegetation composition. For Ecol Manag 257:1716–1724. https://doi.org/10.1016/j.foreco.2009.01.032

    Article  Google Scholar 

  • Barton K (2022) MuMIn: multi-model inference. R package version 1.46.0. https://CRAN.R-project.org/package=MuMIn

  • Baskin CC, Baskin JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination, Second. Academic Press, London, UK

    Google Scholar 

  • Baskin JM, Baskin CC (2019) How much influence does the paternal parent have on seed germination? Seed Sci Res 29:1–11. https://doi.org/10.1017/S0960258518000417

    Article  CAS  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Bawa KS, Seidler R (1998) Natural forest management and conservation of biodiversity in tropical forests. Conserv Biol 12:46–55. https://doi.org/10.1111/j.1523-1739.1998.96480.x

    Article  Google Scholar 

  • Bernardes TG, Estrêla CT, Naves RV et al (2007) Efeito do armazenamento e de fitohormônios na qualidade fisiológica de sementes de araticum (Annona crassiflora Mart.). Pesqui Agropecu Trop 37:163–168

    Google Scholar 

  • Bernardes TG, Naves RV, Rezende CFA et al (2008) Propagação sexuada do pequizeiro (Caryocar brasiliense Camb.) estimulada por ácido giberélico. Pesqui Agropecu Trop 38:71–77

    Google Scholar 

  • Bhagwat SA, Willis KJ, Birks HJB, Whittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol 23:261–267. https://doi.org/10.1016/j.tree.2008.01.005

    Article  PubMed  Google Scholar 

  • Boivin NL, Zeder MA, Fuller DQ et al (2016) Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc Natl Acad Sci 113:6388–6396. https://doi.org/10.1073/pnas.1525200113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonilla-Moheno M, Holl KD (2010) Direct seeding to restore tropical mature-forest species in areas of slash-and-burn agriculture. Restor Ecol 18:438–445. https://doi.org/10.1111/j.1526-100X.2009.00580.x

    Article  Google Scholar 

  • Botezelli L, Davide AC, Malavasi MM (2000) Características dos frutos e sementes de quatro procedências de Dipteryx alata Vogel (Baru). Cerne 6:9–18

    Google Scholar 

  • Braga Filho JR, da Veloso V, RS, Naves RV, et al (2008) Danos causados por insetos em frutos e sementes de Araticum (Annona crassiflora Mart., 1841) no cerrado de Goiás. Biosci J 23:21–28

    Google Scholar 

  • Broschat TK (1998) Endocarp removal enhances Butia capitata (Mart.) Becc. (Pindo Palm) seed germination. HortTechnology 8:586–587. https://doi.org/10.21273/HORTTECH.8.4.586

    Article  Google Scholar 

  • Brower JE, Zar JH, von Ende CN (1998) Field and laboratory methods for general ecology, 4th edn. McGraw-Hill, Boston, Massachusetts

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Cabin RJ, Weller SG, Lorence DH et al (2002) Effects of microsite, water, weeding, and direct seeding on the regeneration of native and alien species within a Hawaiian dry forest preserve. Biol Conserv 104:181–190. https://doi.org/10.1016/S0006-3207(01)00163-X

    Article  Google Scholar 

  • Calle Z, Murgueitio E, Chará J (2012) Intensive silvopastoral systems integrate forestry, sustainable cattle ranching and landscape restoration. Unasylva 69:20

    Google Scholar 

  • Camargo JLC, Ferraz IDK, Imakawa AM (2002) Rehabilitation of degraded areas of central Amazonia using direct sowing of forest tree seeds. Restor Ecol 10:636–644. https://doi.org/10.1046/j.1526-100X.2002.01044.x

    Article  Google Scholar 

  • Carneiro PAP, Araújo VD, Lopes PSN et al (2009) Desenvolvimento inicial de pequizeiros no campo. Rev Bras Agroecol 4:45–48

    Google Scholar 

  • Carvalho ISH, Bergamasco SMPP (2016) Assentamento agroextrativista americana: campesinato, biodiversidade e agroecologia no cerrado mineiro. Retratos Assentamentos 19:209–244. https://doi.org/10.25059/2527-2594/retratosdeassentamentos/2016.v19i1.205

    Article  Google Scholar 

  • Carvalho ISH (2012) Assentamento Americana e grupo agroextrativista do cerrado: uma experiência agroecológica no Norte de Minas. Instituto Sociedade, População e Natureza (ISPN)/Grupo Agroextrativista do Cerrado, Brasília - DF/Grão Mogol - MG

  • Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science (80-) 320:1458–1460. https://doi.org/10.1126/science.1155365

    Article  CAS  Google Scholar 

  • Cole RJ, Holl KD, Keene CL, Zahawi RA (2011) Direct seeding of late-successional trees to restore tropical montane forest. For Ecol Manag 261:1590–1597. https://doi.org/10.1016/j.foreco.2010.06.038

    Article  Google Scholar 

  • Costa CJ (2009) Armazenamento e conservação de sementes de espécies do Cerrado. Embrapa Cerrados, Planaltina, DF

    Google Scholar 

  • da Machado KS, Maltoni KL, Santos CM, Cassiolato AMR (2014) Resíduos orgânicos e fósforo como condicionantes de solo degradado e efeitos sobre o crescimento inicial de Dipteryx alata. Ciênc Florest 24:541–552. https://doi.org/10.1590/1980-509820142403003

    Article  Google Scholar 

  • David S, Compton T (1993) Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science (80-) 260:1905–1910. https://doi.org/10.1126/science.260.5116.1905

    Article  Google Scholar 

  • Dayrell CA (1998) Geraizeiros e biodiversidade no Norte de Minas: a contribuição da agroecologia e da etnoecologia nos estudos dos agroecossistemas tradicionais

  • de Corrêa GC, da Rocha MR, Naves RV (2007) Germinação de sementes e emergência de plântulas de baru (Dipteryx alata Vog.) nos cerrados do estado de Goiás. Pesqui Agropecu Trop 30:17–23

    Google Scholar 

  • de Mello AF, Brasil Sobrinho MOC, Arzolla S, et al (1985) Fertilidade do solo. 400

  • de Vieira FA, Pacheco MV, Lopes PSN (2005) Método de escarificação de putâmens de Caryocar brasiliense. Rev Cient Eletrônica Agron 4:1–8

    Google Scholar 

  • Doust SJ, Erskine PD, Lamb D (2006) Direct seeding to restore rainforest species: microsite effects on the early establishment and growth of rainforest tree seedlings on degraded land in the wet tropics of Australia. For Ecol Manag 234:333–343. https://doi.org/10.1016/j.foreco.2006.07.014

    Article  Google Scholar 

  • Doust SJ, Erskine PD, Lamb D (2008) Restoring rainforest species by direct seeding: tree seedling establishment and growth performance on degraded land in the wet tropics of Australia. For Ecol Manag 256:1178–1188. https://doi.org/10.1016/j.foreco.2008.06.019

    Article  Google Scholar 

  • Engel VL, Parrotta JA (2001) An evaluation of direct seeding for reforestation of degraded lands in central São Paulo state, Brazil. For Ecol Manag 152:169–181. https://doi.org/10.1016/S0378-1127(00)00600-9

    Article  Google Scholar 

  • Espíndola ACM, Moura ACC, Menezes FJ (1991) Influência do tipo de solo e de métodos físicos e químicos na germinação e vigor das mudas de mangabeira. Rev Bras Frutic 283–285

  • FAO, UNEP (2020) The state of the world’s forests 2020: forests, biodiversity and people. Rome

  • Fenner M (1991) The effects of the parent environment on seed germinability. Seed Sci Res 1:75–84. https://doi.org/10.1017/S0960258500000696

    Article  Google Scholar 

  • Fernandes RC (2008) Estudos propagativos do coquinho-azedo (Butia capitata (Mart) Becc) Arecaceae. Masters dissertation. Universidade Federal de Minas Gerais

  • Ferreira RA, Botelho SA, Davide AC, de Malavasi MM (1998) Caracterização morfológica de fruto, semente, plântula e muda de Dipteryx alata Vogel - baru (Leguminosae - Papilionoideae). Cerne 4:73–87

    Google Scholar 

  • Ferreira MJ, Levis C, Chaves L, et al (2022) Indigenous and traditional management creates and maintains the diversity of ecosystems of South American Tropical Savannas. Front. Environ. Sci. 10

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523. https://doi.org/10.1111/j.1469-8137.2006.01787.x

    Article  CAS  PubMed  Google Scholar 

  • Fior CS, Rodrigues LR, Leonhardt C, Schwarz SF (2011) Superação de dormência em sementes de Butia capitata. Ciênc Rural 41:1150–1153. https://doi.org/10.1590/S0103-84782011005000087

    Article  Google Scholar 

  • Fonseca CEL, Figueiredo SA, Silva JAA (1994) Influência da profundidade de semeadura e da luminosidade na germinação de sementes de mangaba (Hancorina speciosa Gom.). Pesqui Agropecu Bras 29:661–666

    Google Scholar 

  • Ghanbari S, Vaezin SMH, Shamekhi T et al (2020) The economic and biological benefits of non-wood forest products to local communities in Iran. Econ Bot 74:59–73. https://doi.org/10.1007/s12231-019-09478-9

    Article  CAS  Google Scholar 

  • Giroldo AB, Scariot A, Hoffmann WA (2017) Trait shifts associated with the subshrub life-history strategy in a tropical savanna. Oecologia 185:281–291. https://doi.org/10.1007/s00442-017-3930-4

    Article  CAS  PubMed  Google Scholar 

  • Goodland R, Pollard R (1973) Brazilian cerrado vegetation - fertility gradient. J Ecol 61:219–224

    Article  Google Scholar 

  • Grabau MR, Milczarek MA, Karpiscak MM et al (2011) Direct seeding for riparian tree re-vegetation: small-scale field study of seeding methods and irrigation techniques. Ecol Eng 37:864–872. https://doi.org/10.1016/j.ecoleng.2011.01.003

    Article  Google Scholar 

  • Guariguata M (1998) Ecological knowledge of regeneration from seed in neotropical forest trees: implications for natural forest management. For Ecol Manag 112:87–99. https://doi.org/10.1016/S0378-1127(98)00318-1

    Article  Google Scholar 

  • Hoffmann WA, Orthen B, Nascimento PKV (2003) Comparative fire ecology of tropical savanna and forest trees. Funct Ecol 17:720–726. https://doi.org/10.1111/j.1365-2435.2003.00796.x

    Article  Google Scholar 

  • Hong TD, Ellis RH (2002) Storage. In: Vozzo JA (ed) Tropical tree seed manual. USDA Forest Service Agriculture Handbook 721, Washington, DC, pp 125–136

    Google Scholar 

  • INMET (2015) Instituto nacional de meteorologia. http://www.inmet.gov.br/

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108. https://doi.org/10.1016/j.tree.2003.10.013

    Article  PubMed  Google Scholar 

  • Kareiva P, Watts S, McDonald R, Boucher T (2007) Domesticated nature: shaping landscapes and ecosystems for human welfare. Science (80-) 316:1866–1869. https://doi.org/10.1126/science.1140170

    Article  CAS  Google Scholar 

  • Knight AJP, Beale PE, Dalton GS (2013) Direct seeding of native trees and shrubs in low rainfall areas and on non-wetting sands in South Australia. Agrofor Syst 39:225. https://doi.org/10.1023/A:1005901111273

    Article  Google Scholar 

  • Lamb D, Erskine PD, Parrotta JA (2005) Restoration of degraded tropical forest landscapes. Science (80-) 310:1628–1632. https://doi.org/10.1126/science.1111773

    Article  CAS  Google Scholar 

  • Lenth R (2020) Emmeans: estimated marginal means, aka least-squares means

  • Lima ILP, Alexiades MN, Scariot A (2022) Livestock management within a traditional agrosilvopastoral system in northern minas Gerais, Brazil: a model for reconciling livelihoods and conservation at a time of environmental change. Hum Ecol 50:183–193. https://doi.org/10.1007/s10745-021-00281-6

    Article  Google Scholar 

  • Lima ILP, Scariot A, Giroldo AB (2013) Sustainable harvest of mangaba (Hancornia speciosa) fruits in Northern Minas Gerais, Brazil. Econ Bot 1–10

  • Lopes PSN, Aquino CF, Magalhães HM, da Brandão Júnior DS (2011) Tratamentos físicos e químicos para superação de dormência em sementes de Butia capitata (Martius). Pesqui Agropecu Trop 41:120–125

    Google Scholar 

  • Mazerolle MJ (2006) Improving data analysis in herpetology: using Akaike’s Information Criterion (AIC) to assess the strength of biological hypotheses. Amphib-Reptil 27:169–180. https://doi.org/10.1163/156853806777239922

    Article  Google Scholar 

  • Melo JT, Silva JA, Torres RAA et al (1998) Coleta, propagação e desenvolvimento inicial de espécies do Cerrado. In: Sano SM, Almeida SP (eds) Cerrado, ambiente e flora. Embrapa - CPAC, Planaltina, DF, pp 319–342

    Google Scholar 

  • Melo JT, Haridasan M (2009) Resposta de mudas de cagaita (Eugenia dysenterica DC) a doses de N, P, K, Ca e Mg. Embrapa Cerrados, Planaltina, DF

  • Michon G, Foresta H (1996) Agroforests as an alternative to pure plantations for the domestication and commercialization of NTFPs. In: Leakey RRB, Temu AB, Melnyk M, Vantomme P (eds) Domestication and commercialization of non-timber forest products in agroforestry systems. FAO, Rome, Italy, pp 160–175

    Google Scholar 

  • Murdoch AJ, Ellis RH (2000) Dormancy, viability and longevity. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities, Second. CABI Publishing, New York, NY, pp 183–214

    Chapter  Google Scholar 

  • Nogueira MCR (2009) Gerais a dentro e a fora: identidade e territorialidade entre Geraizeiros do Norte de Minas Gerais. Universidade de Brasília

  • Oliveira MC, de Pereira DJS, Ribeiro JF (2011) Viveiro e produção de mudas de algumas espécies arbóreas nativas do Cerrado, Second. Embrapa Cerrados, Planaltina, DF

    Google Scholar 

  • Oliveira SS (2002) Efeito de giberelina, fungicida, tratamentos mecânicos e período de armazenamento sobre a germinação de sementes de pequizeiro. Universidade Federal de Mato Grosso

  • Padoch C, Pinedo-Vasquez M (1996) Smallholder forest management: looking beyond non-timber forest products. In: Pérez MR, Arnold JEM (eds) Current issues in non-timber forest products research. Center for International Forestry Research, Bogor, Indonésia, pp 103–118

    Google Scholar 

  • Pagliarini MK, Feliciano ME, Castilho R, Conti M (2012) Superação de dormência em sementes de baru. Tecnol Ciênc Agropecu 6:19–22

    Google Scholar 

  • Parrotta J, Knowles O (1999) Restoration of tropical moist forests on bauxite-mined lands in the Brazilian Amazon. Restor Ecol 7:103–116. https://doi.org/10.1046/j.1526-100X.1999.72001.x

    Article  Google Scholar 

  • Parrotta JA, Turnbull JW, Jones N (1997) Catalyzing native forest regeneration on degraded tropical lands. For Ecol Manag 99:1–7. https://doi.org/10.1016/S0378-1127(97)00190-4

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • Pereira EBC, Pereira AV, Melo JT et al (2004b) Quebra de dormência de araticum. Embrapa Cerrados, Planaltina, DF

    Google Scholar 

  • Pereira AV, Pereira EBC, Silva DB et al (2004a) Quebra de dormência de sementes de pequi. Embrapa Cerrados, Planaltina, DF

    Google Scholar 

  • Perfecto I, Vandermeer J (2008) Biodiversity conservation in tropical agroecosystems. Ann N Y Acad Sci 1134:173–200. https://doi.org/10.1196/annals.1439.011

    Article  PubMed  Google Scholar 

  • Pinedo-Vasquez MA, Sears RR (2011) Várzea forests: multifunctionality as a resource for conservation and sustainable use of biodiversity. In: Pinedo-Vasquez M, Ruffino M, Padoch C, Brondízio E (eds) The amazon várzea. Springer, Dordrecht, Netherlands, pp 187–206

    Chapter  Google Scholar 

  • R Core Team (2022) R: a language and environment for statistical computing

  • Raupp PP, Ferreira MC, Alves M et al (2020) Direct seeding reduces the costs of tree planting for forest and savanna restoration. Ecol Eng 148:105788. https://doi.org/10.1016/j.ecoleng.2020.105788

    Article  Google Scholar 

  • Rausch LL, Gibbs HK, Schelly I et al (2019) Soy expansion in Brazil’s Cerrado. Conserv Lett 12:e12671. https://doi.org/10.1111/conl.12671

    Article  Google Scholar 

  • Reatto A, Correia JR, Spera ST (2008) Solos do bioma Cerrado: aspectos pedológicos. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: ecologia e flora. Embrapa Informação Tecnológica, Embrapa Cerrados, Planaltina, DF, pp 47–86

    Google Scholar 

  • Ribeiro JF, Sano SM, Brito MA (2000) Baru (Dipteryx alata Vog.). FUNEP, Jaboticabal, BR

    Google Scholar 

  • Ribeiro JF, Walter BM (2008) As principais fitofisionomias de Cerrado. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: ecologia e flora. Embrapa Informação Tecnológica, Embrapa Cerrados, Planaltina, DF, pp 151–212

    Google Scholar 

  • Rizzini CT (1970) Efeito tegumentar na germinação de Eugenia dysenterica DC. (Myrtaceae). Rev Bras Biol 30:381–402

    Google Scholar 

  • Rizzini CT (1973) Dormancy in seeds of Anona crassiflora mart. J Exp Bot 24:117–121. https://doi.org/10.1093/jxb/24.1.117

    Article  Google Scholar 

  • Rodrigues ASL, Andelman SJ, Bakarr MI et al (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643. https://doi.org/10.1038/nature02422

    Article  CAS  PubMed  Google Scholar 

  • Ruggiero PGC, Batalha MA, Pivello VR, Meirelles ST (2002) Soil-vegetation relationships in Cerrado (Brazilian savanna) and Semideciduous forest, Southeastern Brazil. Plant Ecol 160:1–16

    Article  Google Scholar 

  • Saboya P, Borghetti F (2012) Germination, initial growth, and biomass allocation in three native Cerrado species. Braz J Bot 35:129–135. https://doi.org/10.1590/S0100-84042012000200002

    Article  Google Scholar 

  • Salomão AN, Sousa-Silva JC, Davide AC et al (2003) Germinação de sementes e produção de mudas de plantas do cerrado. Rede de Sementes do Cerrado, Brasília

    Google Scholar 

  • Sampaio AB, Holl KD, Scariot A (2007) Does restoration enhance regeneration of seasonal deciduous forests in pastures in central Brazil? Restor Ecol 15:462–471. https://doi.org/10.1111/j.1526-100X.2007.00242.x

    Article  Google Scholar 

  • Sano SM, Fonseca CEL (2003) Taxa de sobrevivência e frutificação de espécies nativas do cerrado. Embrapa Cerrados Bol Pesqui Desenvolv 83:20

    Google Scholar 

  • Silva RRP, Oliveira DR, da Rocha GPE, Vieira DLM (2015) Direct seeding of Brazilian savanna trees: effects of plant cover and fertilization on seedling establishment and growth. Restor Ecol 23:393–401. https://doi.org/10.1111/rec.12213

    Article  Google Scholar 

  • Silva DB, Silva JA, Junqueira NTV, Andrade LRM (2001) Frutas do cerrado. Embrapa Informação Tecnológica, Brasília, DF

    Google Scholar 

  • Silveira CES, Palhares D, Pereira LAR et al (2013) Strategies of plant establishment of two Cerrado species: Byrsonima basiloba Juss. (Malpighiaceae) and Eugenia dysenterica Mart. ex DC (Myrtaceae). Plant Species Biol 28:130–137. https://doi.org/10.1111/j.1442-1984.2012.00366.x

    Article  Google Scholar 

  • Smith BD (2011) General patterns of niche construction and the management of “wild” plant and animal resources by small-scale pre-industrial societies. Philos Trans R Soc Lond B Biol Sci 366:836–848. https://doi.org/10.1098/rstb.2010.0253

    Article  PubMed  PubMed Central  Google Scholar 

  • Strassburg BBN, Brooks T, Feltran-Barbieri R et al (2017) Moment of truth for the Cerrado hotspot. Nat Ecol Evol 1:99. https://doi.org/10.1038/s41559-017-0099

    Article  PubMed  Google Scholar 

  • Townsend CR, Begon M, Harper JL (2008) Essentials in ecology, 3rd edn. Blackwell Publishing Ltd., Oxford, UK

    Google Scholar 

  • Uprety Y, Asselin H, Bergeron Y et al (2012) Contribution of traditional knowledge to ecological restoration: practices and applications. Écoscience 19:225–237. https://doi.org/10.2980/19-3-3530

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Venturoli F, Fagg CW, Felfili JM (2011) Desenvolvimento inicial de Dipteryx alata Vogel e Myracrodruon urundeuva Allemão em plantio de enriquecimento de uma floresta estacional semidecídua secundária. Biosci J 27:482–493

    Google Scholar 

  • Vieira Neto RD, Fernandes MF (2000) Crescimento inicial e sobrevivência de mangabeiras (Hancornia speciosa Gomes) a nível de campo, em diferentes substratos. Agrotropica 12:173–180

    Google Scholar 

  • Willoughby I, Clay D, Dixon F (2003) The effect of pre-emergent herbicides on germination and early growth of broadleaved species used for direct seeding. For Int J for Res 76:83–94. https://doi.org/10.1093/forestry/76.1.83

    Article  Google Scholar 

  • Woods K, Elliott S (2004) Direct seeding for forest restoration on abandoned agricultural land in Northern Thailand. J Trop for Sci 16:248–259

    Google Scholar 

  • Zahawi RA, Holl KD (2009) Comparing the performance of tree stakes and seedlings to restore abandoned Tropical pastures. Restor Ecol 17:854–864. https://doi.org/10.1111/j.1526-100X.2008.00423.x

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Michigan

    Google Scholar 

Download references

Acknowledgements

This research was supported by Funbio/TFCA, CNPq and CAPES grants and fellowships. Embrapa Cenargen provided technical and logistic support. Juarez P. Amaral, José M. Mendonça, Nilton F. Barbosa, Daniel R. Oliveira, Pedro Vasconcelos and Elisa Pereira helped with fieldwork. We acknowledge all farmers of the Americana Agroextractive Settlement, especially Maria Elei N. Souza (in memorian), Aparecido A. Souza, João Altino Neto and Cristovino F. Neto.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design and data collection. ILPL and AS obtained funding. ILPL and ABG wrote the first draft of the manuscript and all authors commented on previous versions of the manuscript. ABG analyzed the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Isabela Lustz Portela Lima.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1666 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, I.L.P., Scariot, A. & Giroldo, A.B. Direct seeding of native fruit tree species with economic benefits in a Brazilian Cerrado managed landscape. Braz. J. Bot 45, 1067–1080 (2022). https://doi.org/10.1007/s40415-022-00831-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-022-00831-2

Keywords

Navigation