Skip to main content

Advertisement

Log in

High genetic variability is preserved in relict populations of Cattleya lobata (Orchidaceae) in the Atlantic Rainforests inselbergs

  • Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Inselberg formations rise from the eastern Brazilian landscape like islands interspersed within a matrix of tropical vegetation. As this environment is highly threatened by recent urban expansion and the indiscriminate exploitation of natural resources, the orchid species endemic to these inselbergs have suffered drastic reductions in the sizes of their populations. To verify whether this process has been accompanied by the loss of total genetic variability and stochastic changes of the genetic structure of the remaining populations, the genetic variability and structure of all known relict Cattleya lobata populations were assessed using dominant molecular markers (ISSRs), and their genetic conservation status was defined. High genetic variability was detected (H e = 0.262; I = 0.463), with most of the variation occurring within the populations (93%), along with a weak but significant genetic structure (ΦST = 0.074; P < 0.001). Pollination by deception and long-distance seed dispersal may explain the higher variability values than those expected for impacted species with small populations. Historical factors, such as a more continuous distribution in the recent past with interconnected populations and perennial habit with long-lived individuals, can contribute to the maintenance of ancestral genotypes and a highly variable and homogeneous gene pool. These factors can reduce the possible effects of genetic drift, even in the most heavily impacted C. lobata populations in the tourist areas of Rio de Janeiro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alcântara S, Semir J, Solferini VN (2006) Low genetic structure in an epiphytic Orchidaceae (Oncidium hookeri) in the Atlantic rainforest of South-Eastern Brazil. Ann Bot 98:1207–1213

    Article  PubMed  PubMed Central  Google Scholar 

  • Ávila-Díaz I, Oyama K (2007) Conservation genetics of an endemic and endangered epiphytic Laelia speciosa (Orchidaceae). Am J Bot 94:184–193

    Article  PubMed  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Azevedo MTA, Borba EL, Semir J, Solferini VN (2007) High genetic variability in Neotropical myophilous orchids. Bot J Linn Soc 153:33–40

    Article  Google Scholar 

  • Barbará T, Martinelli G, Fay MF, Mayo SJ, Lexer C (2007) Population differentiation and species cohesion in two closely related plants adapted to Neotropical high-altitude ‘inselbergs’, Alcantarea imperialis and A. geniculata. Mol Ecol 16:1981–1992

    Article  PubMed  Google Scholar 

  • Barbará T, Lexer C, Martinelli G, Mayo S, Fay MF, Heuertz M (2008) Within-population spatial genetic structure in four naturally fragmented species of a Neotropical inselberg radiation, Alcantarea imperialis, A. geniculata, A. glaziouana and A. regina (Bromeliaceae). Heredity 101:285–296

    Article  PubMed  Google Scholar 

  • Barbosa AR, Silva-Pereira V, Borba EL (2013) High genetic variability in self-incompatible myophilous Octomeria (Orchidaceae, Pleurothallidinae) species. Braz J Bot 36:179–187

    Article  Google Scholar 

  • Barros F (1990) Diversidade taxonômica e distribuição das Orchidaceae brasileiras. Acta Bot Bras 4:177–187

    Article  Google Scholar 

  • Borba EL, Braga PIS (2003) Biologia reprodutiva de Pseudolaelia corcovadensis (Orchidaceae): melitofilia e autocompatibilidade em uma Laeliinae basal. Rev Bras Bot 26:541–549

    Article  Google Scholar 

  • Borba EL, Felix JM, Solferini VN, Semir J (2001) Fly-pollinated Pleurothallis (Orchidaceae) species have high genetic variability: evidence from isozyme markers. Am J Bot 88:419–428

    Article  CAS  PubMed  Google Scholar 

  • Borba EL, Funch RR, Ribeiro PL, Smidt EC, Silva-Pereira V (2007a) Demografia, variabilidade genética e morfológica e conservação de Cattleya tenuis (Orchidaceae), espécie ameaçada de extinção da Chapada Diamantina. Sitientibus Ser Ci Biol 7:211–222

    Google Scholar 

  • Borba EL, Funch RR, Ribeiro PL, Smidt EC, Silva-Pereira V (2007b) Demography, and genetic and morphological variability of the endangered Sophronitis sincorana (Orchidaceae) in the Chapada Diamantina, Brazil. Plant Syst Evol 267:129–146

    Article  Google Scholar 

  • Caballero-Villalobos L, Silva-Arias GA, Buzatto CR, Nervo MH, Singer RB (2017) Generalized food deceptive pollination in four Cattleya (Orchidaceae: Laeliinae) species from Southern Brazil. Flora 234:195–206

    Article  Google Scholar 

  • CITES (2010) Convention on international trade in endangered species of wild fauna and flora. Appendices I, II and III. https://www.cites.org/eng/app/appendices.php. Accessed Jan 2011

  • Constantino P, Fraga CN (2005) Conservation strategy for Laelia Lobata (Lindl.) HJ Veitch: the most endangered orchid of Rio de Janeiro. Selbyana 26:85–88

    Google Scholar 

  • Cozzolino S, Widmer A (2005) Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol 20:487–494

    Article  PubMed  Google Scholar 

  • Cruz DT, Selbach-Schnadelbach A, Lambert SM, Ribeiro PL, Borba EL (2011) Genetic and morphological variability in Cattleya elongata Barb. Rodr. (Orchidaceae), endemic to the campo rupestre vegetation in northeastern Brazil. Plant Syst Evol 294:87–98

    Article  Google Scholar 

  • Dressler RL (1981) The orchids: natural history and classification. Harvard University Press, Cambridge

    Google Scholar 

  • Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fajardo CG, Vieira FA, Felix LP, Molina WF (2017) Negligence in the Atlantic forest, northern Brazil: a case study of an endangered orchid. Biodivers Conserv 26:1047–1063

    Article  Google Scholar 

  • Falk DA, Holsinger KE (1991) Genetics and conservation of rare plants. Oxford University Press, New York

    Google Scholar 

  • Gardner G (1846) Travels in the interior of Brazil: principally through the northern provinces, and the gold and diamond districts, during the years 1836–1841. Reeve Brothers, London

    Google Scholar 

  • George S, Sharma J, Yadon VL (2009) Genetic diversity of the endangered and narrow endemic Piperia yadonii (Orchidaceae) assessed with ISSR polymorphisms. Am J Bot 96:2022–2030

    Article  CAS  PubMed  Google Scholar 

  • Lexer C, Marthaler F, Humbert S, Barbará T, de la Harpe M, Bossolini E, Paris M, Martinelli G, Versieux LM (2016) Gene flow and diversification in a species complex of Alcantarea inselberg bromeliads. Bot J Linn Soc 181:505–520

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Mello-Filho LE, Somner GV, Peixoto AL (1992) Centuria Plantarum Brasiliensium extintonis minitata. Sociedade Botânica do Brasil, Brasília

    Google Scholar 

  • Menini-Neto L, Barros F, Vinhos F, Furtado SG, Judice DM, Fernandez EP, Sfair JC, Barros FSM, Prieto PV, Kutschenko DC, Moraes MA, Zanata MRV, Santos-Filho LAF (2013) Orchidaceae. In: Martinelli G, Moraes MA (eds) Livro Vermelho da Flora do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, pp 749–818

    Google Scholar 

  • Mittermeier RA, Robles Gil P, Hoffman M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, Da Fonseca GAB (2005) Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions. University of Chicago Press, Chicago

    Google Scholar 

  • MMA Ministério do Meio Ambiente (2008) Instrução Normativa 6, de 23 de setembro de (2008): Lista oficial das espécies da flora brasileira ameaçadas de extinção. Diário Oficial da União 185, seção 1:75–83

  • Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Tree 9:373–375

    CAS  PubMed  Google Scholar 

  • Moritz C (1995) Uses of molecular phylogenies for conservation. Philos Trans R Soc Lond [Biol] 349:113–118

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Novaes RM, Rodrigues JG, Lovato MB (2009) An efficient protocol for tissue sampling and DNA isolation from the stem bark of Leguminosae trees. GMR 8:86–96

    Article  CAS  PubMed  Google Scholar 

  • Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3:93–144

    Article  Google Scholar 

  • Palma-Silva C, Wendt T, Pinheiro F, Barbará T, Fay MF, Cozzolino S, Lexer C (2011) Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs. Mol Ecol 20:3185–3201

    Article  CAS  PubMed  Google Scholar 

  • Palma-Silva C, Cozzolino S, Paggi GM, Lexer C, Wendt T (2015) Mating system variation and assortative mating of sympatric bromeliads (Pitcairnia spp.) endemic to neotropical inselbergs. Am J Bot 102:758–764

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlex 6.5: genetic in Excel. Population genetic software for teaching and research—an update. Bioinformatics 29:2537–2639

    Article  Google Scholar 

  • Pessanha AS, Menini-Neto L, Forzza RC, Nascimento MT (2014) Composition and conservation of Orchidaceae on an inselberg in the Brazilian Atlantic Forest and floristic relationships with areas of Eastern Brazil. Rev Biol Trop 62:829–841

    Article  PubMed  Google Scholar 

  • Phillips RD, Dixon KW, Peakall R (2012) Low population genetic differentiation in the Orchidaceae: implications for the diversification of the family. Mol Ecol 21:5208–5220

    Article  PubMed  Google Scholar 

  • Pinheiro LR, Rabbani ARC, da Silva AVC, da Silva Lédo A, Pereira KLG, Diniz LEC (2012) Genetic diversity and population structure in the Brazilian Cattleya labiata (Orchidaceae) using RAPD and ISSR markers. Plant Syst Evol 298:1815–1825

    Article  Google Scholar 

  • Pinheiro F, Cozzolino S, Draper D, de Barros F, Félix LP, Fay MF, Palma-Silva C (2014) Rock outcrop orchids reveal the genetic connectivity and diversity of inselbergs of northeastern Brazil. BMC Evol Biol 14:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Porembski S (2007) Tropical inselbergs: habitat types, adaptative strategies and diversity patterns. Rev Bras Bot 30:579–586

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reeves PA, Richards CM (2009) Accurate inference of subtle population structure (and other genetic discontinuities) using principal coordinates. PLoS ONE 4:e4269

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribeiro PL, Borba EL, Smidt EC, Lambert SM, Selbach-Schnadelbach A, van den Berg C (2008) Genetic and morphological variation in the Bulbophyllum exaltatum (Orchidaceae) complex occurring in the Brazilian “Campos rupestres”: implications for taxonomy and biogeography. Plant Syst Evol 270:109–137

    Article  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Rodrigues JF, van den Berg C, Abreu AG, Novello M, Veasey EA, Oliveira GCX, Koehler S (2015) Species delimitation of Cattleya coccinea and C. mantiqueirae (Orchidaceae): insights from phylogenetic and population genetics analyses. Plant Syst Evol 301:1345–1359

    Article  Google Scholar 

  • Safford HD, Martinelli G (2000) Southeast Brazil. In: Barthlott W, Porembski S (eds) Inselbergs: biotic diversity of isolated rock outcrops in the tropics, ecological studies. Springer, Berlin, pp 339–389

    Chapter  Google Scholar 

  • Silva-Pereira V, Smidt EC, Borba EL (2007) Isolation mechanisms between two sympatric Sophronitis (Orchidaceae) species endemic to Northeastern Brazil. Plant Syst Evol 269:171–182

    Article  Google Scholar 

  • Smidt EC, Silva-Pereira V, Borba EL (2006) Reproductive biology of two Cattleya (Orchidaceae) species endemic to North-Eastern Brazil. Plant Species Biol 21:85–91

    Article  Google Scholar 

  • Trapnell DW, Hamrick JL, Nason JD (2004) Three-dimensional fine-scale genetic structure of the Neotropical epiphytic orchid, Laelia rubescens. Mol Ecol 13:1111–1118

    Article  CAS  PubMed  Google Scholar 

  • Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN (2005) Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc 84:1–54

    Article  Google Scholar 

  • van den Berg C (2014) Reaching a compromise between conflicting nuclear and plastid phylogenetic trees: a new classification for the genus Cattleya (Epidendreae; Epidendroideae; Orchidaceae). Phytotaxa 186:75–86

    Article  Google Scholar 

  • Withner CL (1988) The cattleyas and their relatives. Timber Press, Portland

    Google Scholar 

  • Wolfe AD, Liston A (1998) Contributions of PCR-based methods to plant systematics and evolutionary biology. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II. Springer, Boston, pp 43–86

    Chapter  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations. Variability within and among natural populations, vol 4. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgements

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (MCT/CNPq Nº 482405/2009-0) and Centro de Pesquisas e Desenvolvimento Leopoldo Américo M. de Mello (CENPES/Petrobras Nº 4600202500) for financial support; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for a fellowship awarded to Patrícia C L Gomes; CNPq for a research grant awarded to Eric C Smidt; Elaine L P Nunes for technical support; the Projeto CORES—Conservação das Orquídeas em Risco de Extinção team; and the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) for collecting licenses; and two anonymous reviewers for contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviane Silva-Pereira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Supplementary material 2 (DOCX 318 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, P.C.L., de Camargo Smidt, E., de Fraga, C.N. et al. High genetic variability is preserved in relict populations of Cattleya lobata (Orchidaceae) in the Atlantic Rainforests inselbergs. Braz. J. Bot 41, 185–195 (2018). https://doi.org/10.1007/s40415-017-0422-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-017-0422-z

Keywords

Navigation