Skip to main content

Advertisement

Log in

Exploring the efficacy of FAPI PET/CT in the diagnosis and treatment management of colorectal cancer: a comprehensive literature review and initial experience

  • Expert Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

FAPI PET/CT, an innovative medical imaging technique, has emerged as a promising method to target fibroblast activation protein (FAP). This novel approach offers numerous benefits, such as increased tumor absorption and reduced background noise. As a result, FAPI PET/CT images demonstrate a favorable ratio of tumor signal to background, allowing for precise tumor staging, characterization, and detection. Given the heightened expression of FAP in colorectal cancer (CRC), FAPI PET/CT has the potential to revolutionize CRC staging, restaging, and monitoring, as well as enhance treatment management and improve patient prognosis. This comprehensive review aims to provide a detailed overview of the current applications of FAPI PET/CT in CRC, while also proposing future research directions, specifically in comparison to the standard FDG PET imaging modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. Ca Cancer J Clin 71(1):7–33

    Article  PubMed  Google Scholar 

  2. Biller LH, Schrag D (2021) Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA 325(7):669–685

    Article  CAS  PubMed  Google Scholar 

  3. Provenzale D, Ness RM, Llor X, Weiss JM, Abbadessa B, Cooper G et al (2020) NCCN Guidelines insights: colorectal cancer screening, version 2.2020: featured updates to the NCCN guidelines. J Nat Compr Cancer Netw 18(10):1312–1320

    Article  Google Scholar 

  4. Cao Y, Wang X (2021) Effects of molecular markers on the treatment decision and prognosis of colorectal cancer: a narrative review. J Gastrointest Oncol 12(3):1191

    Article  PubMed  PubMed Central  Google Scholar 

  5. El Bali M, Bakkach J, Bennani Mechita M 2021 Colorectal cancer: from genetic landscape to targeted therapy. J Oncol, 2021

  6. Grewal S, Oosterling SJ, van Egmond M (2021) Surgery for colorectal cancer: a trigger for liver metastases development? New insights into the underlying mechanisms. Biomedicines 9(2):177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chessin DB, Kiran RP, Akhurst T, Guillem JG (2005) The emerging role of 18F-fluorodeoxyglucose positron emission tomography in the management of primary and recurrent rectal cancer. J Am Coll Surg 201(6):948–956

    Article  PubMed  Google Scholar 

  8. Ogunbiyi OA, Flanagan FL, Dehdashti F, Siegel BA, Trask DD, Birnbaum EH et al (1997) Detection of recurrent and metastatic colorectal cancer: comparison of positron emission tomography and computed tomography. Ann Surg Oncol 4:613–620

    Article  CAS  PubMed  Google Scholar 

  9. Bae SU, Won KS, Song B-I, Jeong WK, Baek SK, Kim HW (2018) Accuracy of F-18 FDG PET/CT with optimal cut-offs of maximum standardized uptake value according to size for diagnosis of regional lymph node metastasis in patients with rectal cancer. Cancer Imaging 18(1):1–8

    Article  Google Scholar 

  10. Cheng Z, Wang S, Xu S, Du B, Li X, Li Y (2023) FAPI PET/CT in diagnostic and treatment management of colorectal cancer: review of current research status. J Clin Med 12(2):577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dagallier C, Avry F, Touchefeu Y, Buron F, Routier S, Chérel M et al (2021) Development of PET radioligands targeting COX-2 for colorectal cancer staging, a review of in vitro and preclinical imaging studies. Front Med 8:675209

    Article  Google Scholar 

  12. Strauss LG, Clorius J, Schlag P, Lehner B, Kimmig B, Engenhart R et al (1989) Recurrence of colorectal tumors: PET evaluation. Radiology 170(2):329–332

    Article  CAS  PubMed  Google Scholar 

  13. Moore HG, Akhurst T, Larson SM, Minsky BD, Mazumdar M, Guillem JG (2003) A case-controlled study of 18-fluorodeoxyglucose positron emission tomography in the detection of pelvic recurrence in previously irradiated rectal cancer patients. J Am Coll Surg 197(1):22–28

    Article  PubMed  Google Scholar 

  14. Dvorak HF (2019) Tumors: wounds that do not heal—a historical perspective with a focus on the fundamental roles of increased vascular permeability and clotting. Seminars in thrombosis and hemostasis. Thieme Medical Publishers, pp 576–592

    Google Scholar 

  15. Fukino K, Shen L, Patocs A, Mutter GL, Eng C (2007) Genomic instability within tumor stroma and clinicopathological characteristics of sporadic primary invasive breast carcinoma. JAMA 297(19):2103–2111

    Article  CAS  PubMed  Google Scholar 

  16. Fathi M, Bahmanpour S, Barshidi A, Rasouli H, Kiani FK, Khesht AMS et al (2021) Simultaneous blockade of TIGIT and HIF-1α induces synergistic anti-tumor effect and decreases the growth and development of cancer cells. Int Immunopharmacol 101:108288

    Article  CAS  PubMed  Google Scholar 

  17. Salimifard S, Masjedi A, Hojjat-Farsangi M, Ghalamfarsa G, Irandoust M, Azizi G et al (2020) Cancer associated fibroblasts as novel promising therapeutic targets in breast cancer. Pathol-Res Pract 216(5):152915

    Article  CAS  PubMed  Google Scholar 

  18. Lyssiotis CA, Kimmelman AC (2017) Metabolic interactions in the tumor microenvironment. Trends Cell Biol 27(11):863–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sanford-Crane H, Abrego J, Sherman MH (2019) Fibroblasts as modulators of local and systemic cancer metabolism. Cancers 11(5):619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alexander J, Cukierman E (2020) Cancer associated fibroblast: mediators of tumorigenesis. Matrix Biol 91:19–34

    Article  PubMed  Google Scholar 

  21. Liu F, Qi L, Liu B, Liu J, Zhang H, Che D et al (2015) Fibroblast activation protein overexpression and clinical implications in solid tumors: a meta-analysis. PLoS ONE 10(3):e0116683

    Article  PubMed  PubMed Central  Google Scholar 

  22. Deng L, Jiang N, Zeng J, Wang Y, Cui H (2021) The versatile roles of cancer-associated fibroblasts in colorectal cancer and therapeutic implications. Front Cell Develop Biol 9:733270

    Article  Google Scholar 

  23. Truffi M, Mazzucchelli S, Bonizzi A, Sorrentino L, Allevi R, Vanna R et al (2019) Nano-strategies to target breast cancer-associated fibroblasts: rearranging the tumor microenvironment to achieve antitumor efficacy. Int J Mol Sci 20(6):1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Coto-Llerena M, Ercan C, Kancherla V, Taha-Mehlitz S, Eppenberger-Castori S, Soysal SD et al (2020) High expression of FAP in colorectal cancer is associated with angiogenesis and immunoregulation processes. Front Oncol 10:979

    Article  PubMed  PubMed Central  Google Scholar 

  25. Assadi M, Rekabpour SJ, Jafari E, Divband G, Nikkholgh B, Amini H et al (2021) Feasibility and therapeutic potential of 177Lu–fibroblast activation protein inhibitor–46 for patients with relapsed or refractory cancers: a preliminary study. Clin Nucl Med 46(11):e523–e530

    Article  PubMed  Google Scholar 

  26. Puré E, Blomberg R (2018) Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics. Oncogene 37(32):4343–4357

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lindner T, Giesel FL, Kratochwil C, Serfling SE (2021) Radioligands targeting fibroblast activation protein (FAP). Cancers 13(22):5744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dendl K, Koerber S, Kratochwil C, Cardinale J, Finck R, Dabir M et al (2021) FAP and FAPI-PET/CT in malignant and non-malignant diseases: a perfect symbiosis? Cancers (Basel) 13(19):4946

    Article  CAS  PubMed  Google Scholar 

  29. Fitzgerald AA, Weiner LM (2020) The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Rev 39(3):783–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baum RP, Schuchardt C, Singh A, Chantadisai M, Robiller FC, Zhang J et al (2022) Feasibility, biodistribution, and preliminary dosimetry in peptide-targeted radionuclide therapy of diverse adenocarcinomas using 177Lu-FAP-2286: first-in-humans results. J Nucl Med 63(3):415–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Langbein T, Weber WA, Eiber M (2019) Future of theranostics: an outlook on precision oncology in nuclear medicine. J Nucl Med 60(Supplement 2):13S-S19

    Article  CAS  PubMed  Google Scholar 

  32. Sollini M, Kirienko M, Gelardi F, Fiz F, Gozzi N, Chiti A (2021) State-of-the-art of FAPI-PET imaging: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 48(13):4396–4414

    Article  PubMed  Google Scholar 

  33. Calais J (2020) FAP: the next billion dollar nuclear theranostics target? J Nucl Med 61(2):163–165

    Article  PubMed  Google Scholar 

  34. Huang R, Pu Y, Huang S, Yang C, Yang F, Pu Y et al (2022) FAPI-PET/CT in cancer imaging: a potential novel molecule of the century. Front Oncol 12:854658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lindner T, Loktev A, Altmann A, Giesel F, Kratochwil C, Debus J et al (2018) Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med 59(9):1415–1422

    Article  CAS  PubMed  Google Scholar 

  36. Loktev A, Lindner T, Mier W, Debus J, Altmann A, Jäger D et al (2018) A tumor-imaging method targeting cancer-associated fibroblasts. J Nucl Med 59(9):1423–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mao X, Xu J, Wang W, Liang C, Hua J, Liu J et al (2021) Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer 20(1):1–30

    Article  Google Scholar 

  38. Mhaidly R, MechtaGrigoriou F (2020) Fibroblast heterogeneity in tumor micro-environment: role in immunosuppression and new therapies. Seminars in immunology. Elsevier, p 101417

    Google Scholar 

  39. Chen Y, McAndrews KM, Kalluri R (2021) Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol 18(12):792–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barsoumian HB, Ramapriyan R, Younes AI, Caetano MS, Menon H, Comeaux NI, et al. 2020 Low-dose radiation treatment enhances systemic antitumor immune responses by overcoming the inhibitory stroma. J Immunother Cancer, 8(2)

  41. Miyashita N, Saito A (2021) Organ specificity and heterogeneity of cancer-associated fibroblasts in colorectal cancer. Int J Mol Sci 22(20):10973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fotsitzoudis C, Koulouridi A, Messaritakis I, Konstantinidis T, Gouvas N, Tsiaoussis J et al (2022) Cancer-associated fibroblasts: the origin, biological characteristics and role in cancer—a glance on colorectal cancer. Cancers 14(18):4394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sandberg TP, Stuart MP, Oosting J, Tollenaar RA, Sier CF, Mesker WE (2019) Increased expression of cancer-associated fibroblast markers at the invasive front and its association with tumor-stroma ratio in colorectal cancer. BMC Cancer 19(1):1–9

    Article  Google Scholar 

  44. Rathke H, Fuxius S, Giesel FL, Lindner T, Debus J, Haberkorn U et al (2021) Two tumors, one target: preliminary experience with: 90: y-fapi therapy in a patient with metastasized breast and colorectal cancer. Clin Nucl Med 46(10):842–844

    Article  PubMed  Google Scholar 

  45. Meyer C, Dahlbom M, Lindner T, Vauclin S, Mona C, Slavik R et al (2020) Radiation dosimetry and biodistribution of 68Ga-FAPI-46 PET imaging in cancer patients. J Nucl Med 61(8):1171–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ballal S, Yadav MP, Moon ES, Kramer VS, Roesch F, Kumari S et al (2021) Biodistribution, pharmacokinetics, dosimetry of [68 Ga] Ga-DOTA. SA. FAPi, and the head-to-head comparison with [18 F] F-FDG PET/CT in patients with various cancers. Euro J Nucl Med Mol Imag 48:1915–31

    Article  CAS  Google Scholar 

  47. Giesel FL, Kratochwil C, Schlittenhardt J, Dendl K, Eiber M, Staudinger F et al (2021) Head-to-head intra-individual comparison of biodistribution and tumor uptake of 68Ga-FAPI and 18F-FDG PET/CT in cancer patients. Eur J Nucl Med Mol Imaging 48(13):4377–4385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Giesel FL, Kratochwil C, Lindner T, Marschalek MM, Loktev A, Lehnert W et al (2019) 68Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers. J Nucl Med 60(3):386–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mona CE, Benz MR, Hikmat F, Grogan TR, Lueckerath K, Razmaria A et al (2022) Correlation of 68Ga-FAPi-46 PET biodistribution with FAP expression by immunohistochemistry in patients with solid cancers: interim analysis of a prospective translational exploratory study. J Nucl Med 63(7):1021–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Strating E, Wassenaar E, Verhagen M, Rauwerdink P, van Schelven S, de Hingh I et al (2022) Fibroblast activation protein identifies consensus molecular subtype 4 in colorectal cancer and allows its detection by 68Ga-FAPI-PET imaging. Br J Cancer 127(1):145–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koerber SA, Staudinger F, Kratochwil C, Adeberg S, Haefner MF, Ungerechts G et al (2020) The role of 68Ga-FAPI PET/CT for patients with malignancies of the lower gastrointestinal tract: first clinical experience. J Nucl Med 61(9):1331–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen S-H, Miles K, Taylor SA, Ganeshan B, Rodriquez M, Fraioli F et al (2021) FDG-PET/CT in colorectal cancer: potential for vascular-metabolic imaging to provide markers of prognosis. Euro J Nucl Med Mol Imag 49:1–14

    Article  Google Scholar 

  53. Liu H, Ye Z, Yang T, Xie H, Duan T, Li M et al (2021) Predictive value of metabolic parameters derived from 18F-FDG PET/CT for microsatellite instability in patients with colorectal carcinoma. Front Immunol 12:724464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Van Helden E, Vacher Y, Van Wieringen W, Van Velden F, Verheul H, Hoekstra O et al (2018) Radiomics analysis of pre-treatment [18 F] FDG PET/CT for patients with metastatic colorectal cancer undergoing palliative systemic treatment. Eur J Nucl Med Mol Imaging 45:2307–2317

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dendl K, Koerber SA, Tamburini K, Mori Y, Cardinale J, Haberkorn U et al (2022) Advancement and future perspective of FAPI PET/CT in gynecological malignancies. Seminars in Nuclear Medicine. Elsevier

    Google Scholar 

  56. Dendl K, Koerber SA, Finck R, Mokoala KM, Staudinger F, Schillings L et al (2021) 68Ga-FAPI-PET/CT in patients with various gynecological malignancies. Eur J Nucl Med Mol Imaging 48(12):4089–4100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li Y, Deng L, Feng Y, Liu L, Lv F, Qiu L (2023) Potential utility of 68Ga-DOTA-FAPI-04 as a broad-spectrum benign disease imaging agent—comparison with 18F-FDG and 99mTc-MDP. Eur Radiol 33(12):9378–9389

    Article  CAS  PubMed  Google Scholar 

  58. Hicks RJ, Roselt PJ, Kallur KG, Tothill RW, Mileshkin L (2021) FAPI PET/CT: will it end the hegemony of 18F-FDG in oncology? J Nucl Med 62(3):296–302

    Article  CAS  PubMed  Google Scholar 

  59. Qin C, Song Y, Gai Y, Ruan W, Liu Q, Liu F et al (2022) Gallium-68-labeled fibroblast activation protein inhibitor PET in gastrointestinal cancer: insights into diagnosis and management. Eur J Nucl Med Mol Imaging 49(12):4228–4240

    Article  CAS  PubMed  Google Scholar 

  60. Pang Y, Zhao L, Luo Z, Hao B, Wu H, Lin Q et al (2021) Comparison of 68Ga-FAPI and 18F-FDG uptake in gastric, duodenal, and colorectal cancers. Radiology 298(2):393–402

    Article  PubMed  Google Scholar 

  61. Elboga U, Sahin E, Kus T, Cayirli YB, Aktas G, Okuyan M et al (2022) Comparison of 68Ga-FAPI PET/CT and 18FDG PET/CT modalities in gastrointestinal system malignancies with peritoneal involvement. Mol Imag Biol 24(5):789–797

    Article  Google Scholar 

  62. Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W et al (2019) 68Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med 60(6):801–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Şahin E, Elboğa U, Çelen YZ, Sever ÖN, Çayırlı YB, Çimen U (2021) Comparison of 68Ga-DOTA-FAPI and 18FDG PET/CT imaging modalities in the detection of liver metastases in patients with gastrointestinal system cancer. Eur J Radiol 142:109867

    Article  PubMed  Google Scholar 

  64. Kömek H, Can C, Kaplan İ, Gündoğan C, Kepenek F, Karaoglan H et al (2022) Comparison of [68 Ga] Ga-DOTA-FAPI-04 PET/CT and [18F] FDG PET/CT in colorectal cancer. Eur J Nucl Med Mol Imaging 49(11):3898–3909

    Article  PubMed  Google Scholar 

  65. Lin X, Li Y, Wang S, Zhang Y, Chen X, Wei M et al (2023) Diagnostic value of [68Ga] Ga-FAPI-04 in patients with colorectal cancer in comparison with [18F] F-FDG PET/CT. Front Oncol 12:1087792

    Article  PubMed  PubMed Central  Google Scholar 

  66. Prashanth A, Kumar Ravichander S, Eswaran P, Kalyan S, Maheswari BS (2023) Diagnostic performance of Ga-68 FAPI 04 PET/CT in colorectal malignancies. Nucl Med Commun 44(4):276–283

    Article  CAS  PubMed  Google Scholar 

  67. Erol Fenercioğlu Ö, Beyhan E, Şahin R, Baloğlu MC, Arslan E, Çermik TF et al (2023) The potential role of 68Ga-FAPI-04 PET/CT for screening malignancy in suspected colonic lesions. Nucl Med Commun. https://doi.org/10.1097/MNM.0000000000001734

    Article  PubMed  Google Scholar 

  68. Welt S, Divgi CR, Scott AM, Garin-Chesa P, Finn RD, Graham M et al (1994) Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. J Clin Oncol 12(6):1193–1203

    Article  CAS  PubMed  Google Scholar 

  69. Garousi J, Orlova A, Frejd FY, Tolmachev V (2020) Imaging using radiolabelled targeted proteins: Radioimmunodetection and beyond. EJNMMI Radiopharm Chem 5:1–26

    Article  Google Scholar 

  70. Adams S, Miller GT, Jesson MI, Watanabe T, Jones B, Wallner BP (2004) PT-100, a small molecule dipeptidyl peptidase inhibitor, has potent antitumor effects and augments antibody-mediated cytotoxicity via a novel immune mechanism. Can Res 64(15):5471–5480

    Article  CAS  Google Scholar 

  71. Jansen K, Heirbaut L, Cheng JD, Joossens J, Ryabtsova O, Cos P et al (2013) Selective inhibitors of fibroblast activation protein (FAP) with a (4-quinolinoyl)-glycyl-2-cyanopyrrolidine scaffold. ACS Med Chem Lett 4(5):491–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jansen K, Heirbaut L, Verkerk R, Cheng JD, Joossens J, Cos P et al (2014) Extended structure–activity relationship and pharmacokinetic investigation of (4-quinolinoyl) glycyl-2-cyanopyrrolidine inhibitors of fibroblast activation protein (FAP). J Med Chem 57(7):3053–3074

    Article  CAS  PubMed  Google Scholar 

  73. Wei W, Rosenkrans ZT, Liu J, Huang G, Luo Q-Y, Cai W (2020) ImmunoPET: concept, design, and applications. Chem Rev 120(8):3787–3851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wahl RL, Philpott G, Parker CW (1983) Monoclonal antibody radioimmunodetection of human-derived colon cancer. Invest Radiol 18(1):58–62

    Article  CAS  PubMed  Google Scholar 

  75. Rahmim A, Lodge MA, Karakatsanis NA, Panin VY, Zhou Y, McMillan A et al (2019) Dynamic whole-body PET imaging: principles, potentials and applications. Eur J Nucl Med Mol Imaging 46:501–518

    Article  PubMed  Google Scholar 

  76. Chen H, Pang Y, Wu J, Zhao L, Hao B, Wu J et al (2020) Comparison of [68 Ga] Ga-DOTA-FAPI-04 and [18 F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer. Eur J Nucl Med Mol Imag 47:1820–1832

    Article  Google Scholar 

  77. Wen X, Xu P, Shi M, Liu J, Zeng X, Zhang Y et al (2022) Evans blue-modified radiolabeled fibroblast activation protein inhibitor as long-acting cancer therapeutics. Theranostics 12(1):422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wen X, Xu P, Shi M, Guo Z, Zhang X, Khong P-L et al (2022) 177Lu-DOTA-EB-FAPI imaging and therapy of fibroblast activation protein (FAP) positive Tumors. Soc Nuclear Med

    Google Scholar 

  79. Xu M, Zhang P, Ding J, Chen J, Huo L, Liu Z (2022) Albumin binder–conjugated fibroblast activation protein inhibitor radiopharmaceuticals for cancer therapy. J Nucl Med 63(6):952–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang P, Xu M, Ding J, Chen J, Zhang T, Huo L et al (2022) Fatty acid-conjugated radiopharmaceuticals for fibroblast activation protein-targeted radiotherapy. Euro J Nucl Med Imag 49:1–12

    Google Scholar 

  81. Meng L, Fang J, Zhao L, Wang T, Yuan P, Zhao Z et al (2022) Rational design and pharmacomodulation of protein-binding theranostic radioligands for targeting the fibroblast activation protein. J Med Chem 65(12):8245–8257

    Article  CAS  PubMed  Google Scholar 

  82. Mahon E, Barboiu M (2015) Synthetic multivalency for biological applications. Org Biomol Chem 13(43):10590–10599

    Article  CAS  PubMed  Google Scholar 

  83. Moon ES, Ballal S, Yadav MP, Bal C, Van Rymenant Y, Stephan S et al (2021) Fibroblast activation protein (FAP) targeting homodimeric FAP inhibitor radiotheranostics: a step to improve tumor uptake and retention time. Am J Nucl Med Mol Imag 11(6):476

    CAS  Google Scholar 

  84. Qin C, Song Y, Cai W, Lan X (2021) Dimeric FAPI with potential for tumor theranostics. Am J Nucl Med Mol Imag 11(6):537

    Google Scholar 

  85. Younis MH, Lan X, Cai W (2022) PET with a 68Ga-labeled FAPI dimer: moving toward theranostics. J Nucl Med 63(6):860

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhao L, Niu B, Fang J, Pang Y, Li S, Xie C et al (2022) Synthesis, preclinical evaluation, and a pilot clinical PET imaging study of 68Ga-labeled FAPI dimer. J Nucl Med 63(6):862–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pang Y, Zhao L, Fang J, Chen J, Meng L, Sun L et al (2023) Development of FAPI tetramers to improve tumor uptake and efficacy of FAPI radioligand therapy. J Nucl Med 64(9):1449–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu H, Hu Z, Yang X, Dai T, Chen Y (2022) Comparison of [68Ga] Ga-DOTA-FAPI-04 and [18F] FDG uptake in esophageal cancer. Front Oncol 12:875081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen H, Zhao L, Ruan D, Pang Y, Hao B, Dai Y et al (2021) Usefulness of [68 ga] ga-dota-fapi-04 pet/ct in patients presenting with inconclusive [18 f] fdg pet/ct findings. Eur J Nucl Med Mol Imag 48:73–86

    Article  Google Scholar 

  90. Varasteh Z, Mohanta S, Robu S, Braeuer M, Li Y, Omidvari N et al (2019) Molecular imaging of fibroblast activity after myocardial infarction using a 68Ga-labeled fibroblast activation protein inhibitor, FAPI-04. J Nucl Med 60(12):1743–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schmidkonz C, Rauber S, Atzinger A, Agarwal R, Götz TI, Soare A et al (2020) Disentangling inflammatory from fibrotic disease activity by fibroblast activation protein imaging. Ann Rheum Dis 79(11):1485–1491

    Article  CAS  PubMed  Google Scholar 

  92. Luo Y, Pan Q, Yang H, Peng L, Zhang W, Li F (2021) Fibroblast activation protein–targeted PET/CT with 68Ga-FAPI for imaging IgG4-related disease: comparison to 18F-FDG PET/CT. J Nucl Med 62(2):266–271

    Article  CAS  PubMed  Google Scholar 

  93. Zidar N, Langner C, Jerala M, Boštjančič E, Drobne D, Tomažič A (2020) Pathology of fibrosis in Crohn’s disease—contribution to understanding its pathogenesis. Front Med 7:167

    Article  Google Scholar 

  94. Polack M, Hagenaars SC, Couwenberg A, Kool W, Tollenaar RA, Vogel WV et al (2022) Characteristics of tumour stroma in regional lymph node metastases in colorectal cancer patients: a theoretical framework for future diagnostic imaging with FAPI PET/CT. Clin Transl Oncol 24(9):1776–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. GlynneJones R, Wyrwicz L, Tiret E, Brown G, Rödel Cd, Cervantes A et al (2017) Rectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 28:iv22–iv40

    Article  CAS  PubMed  Google Scholar 

  96. Zhang M, Yang J, Jiang H, Jiang H, Wang Z (2021) Correlation between glucose metabolism parameters derived from FDG and tumor TNM stages and metastasis-associated proteins in colorectal carcinoma patients. BMC Cancer 21:1–9

    Google Scholar 

  97. Sun R, Zeng G, Huang Z, Chen X (2023) Visualization of metabolic parameters after colorectal carcinoma patients using [68Ga]Ga-FAPI PET. Res Sq (preprint)

  98. Bliggenstorfer JT, Ginesi M, Steinhagen E, Stein SL (2022) Lymph node yield after rectal resection is a predictor of survival among patients with node-negative rectal adenocarcinoma. Surgery 172(5):1292–1299

    Article  PubMed  Google Scholar 

  99. Yin Y-x, Xie M-z, Liang X-q, Ye M-l, Li J-l, Hu B-l (2021) Clinical significance and prognostic value of the maximum standardized uptake value of 18F-flurodeoxyglucose positron emission tomography-computed tomography in colorectal cancer. Front Oncol 11:741612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Solano-Iturri JD, Beitia M, Errarte P, Calvete-Candenas J, Etxezarraga MC, Loizate A et al (2020) Altered expression of fibroblast activation protein-α (FAP) in colorectal adenoma-carcinoma sequence and in lymph node and liver metastases. Aging (Albany NY) 12(11):10337

    Article  CAS  PubMed  Google Scholar 

  101. Sugai T, Yamada N, Osakabe M, Hashimoto M, Uesugi N, Eizuka M et al (2021) Microenvironmental markers are correlated with lymph node metastasis in invasive submucosal colorectal cancer. Histopathology 79(4):584–598

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kranenburg O, Speeten KVD, Hingh ID (2021) Peritoneal metastases from colorectal cancer: defining and addressing the challenges. Front Oncol 11:650098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Van’t Sant I, Engbersen M, Bhairosing P, Lambregts D, BeetsTan R, van Driel W et al (2020) Diagnostic performance of imaging for the detection of peritoneal metastases: a meta-analysis. Euro Radiol 30:3101–12

    Article  Google Scholar 

  104. Goéré D, Souadka A, Faron M, Cloutier AS, Viana B, Honoré C et al (2015) Extent of colorectal peritoneal carcinomatosis: attempt to define a threshold above which HIPEC does not offer survival benefit: a comparative study. Ann Surg Oncol 22:2958–2964

    Article  PubMed  Google Scholar 

  105. Van Oudheusden T, Braam H, Luyer M, Wiezer M, van Ramshorst B, Nienhuijs S et al (2015) Peritoneal cancer patients not suitable for cytoreductive surgery and HIPEC during explorative surgery: risk factors, treatment options, and prognosis. Ann Surg Oncol 22:1236–1242

    Article  PubMed  Google Scholar 

  106. Tseng J, Bryan DS, Poli E, Sharma M, Polite BN, Turaga KK (2017) Under-representation of peritoneal metastases in published clinical trials of metastatic colorectal cancer. Lancet Oncol 18(6):711–712

    Article  PubMed  Google Scholar 

  107. Zhao L, Pang Y, Luo Z, Fu K, Yang T, Zhao L et al (2021) Role of [68 Ga] Ga-DOTA-FAPI-04 PET/CT in the evaluation of peritoneal carcinomatosis and comparison with [18 F]-FDG PET/CT. Eur J Nucl Med Mol Imaging 48:1944–1955

    Article  CAS  PubMed  Google Scholar 

  108. Kalaei Z, Manafi-Farid R, Rashidi B, Kiani FK, Zarei A, Fathi M et al (2023) The Prognostic and therapeutic value and clinical implications of fibroblast activation protein-α as a novel biomarker in colorectal cancer. Cell Commun Signal 21(1):1–17

    Article  Google Scholar 

  109. Pandya A, Shah Y, Kothari N, Postwala H, Shah A, Parekh P et al (2023) The future of cancer immunotherapy: DNA vaccines leading the way. Med Oncol 40(7):200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liermann J, Syed M, Ben-Josef E, Schubert K, Schlampp I, Sprengel SD et al (2021) Impact of FAPI-PET/CT on target volume definition in radiation therapy of locally recurrent pancreatic cancer. Cancers 13(4):796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kömek H, Can C, Güzel Y, Oruç Z, Gündoğan C, Yildirim ÖA et al (2021) 68 Ga-FAPI-04 PET/CT, a new step in breast cancer imaging: a comparative pilot study with the 18 F-FDG PET/CT. Ann Nucl Med 35:744–752

    Article  PubMed  Google Scholar 

  112. Huang Y, Wang S, Kelly T (2004) Seprase promotes rapid tumor growth and increased microvessel density in a mouse model of human breast cancer. Can Res 64(8):2712–2716

    Article  CAS  Google Scholar 

  113. Koczorowska M, Tholen S, Bucher F, Lutz L, Kizhakkedathu J, De Wever O et al (2016) Fibroblast activation protein-α, a stromal cell surface protease, shapes key features of cancer associated fibroblasts through proteome and degradome alterations. Mol Oncol 10(1):40–58

    Article  CAS  PubMed  Google Scholar 

  114. Wu Q-Q, Zhao M, Huang G-Z, Zheng Z-N, Chen Y, Zeng W-S et al (2020) Fibroblast activation protein (FAP) overexpression induces epithelial–mesenchymal transition (EMT) in oral squamous cell carcinoma by down-regulating dipeptidyl peptidase 9 (DPP9). Onco Targets Ther 13:2599–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen L, Qiu X, Wang X, He J (2017) FAP positive fibroblasts induce immune checkpoint blockade resistance in colorectal cancer via promoting immunosuppression. Biochem Biophys Res Commun 487(1):8–14

    Article  CAS  PubMed  Google Scholar 

  116. Charo I, Taubman MB (2004) Chemokines in the pathogenesis of vascular disease. Circ Res 95:858–866

    Article  CAS  PubMed  Google Scholar 

  117. Chun E, Lavoie S, Michaud M, Gallini CA, Kim J, Soucy G et al (2015) CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function. Cell Rep 12(2):244–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Assadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadgar, H., Norouzbeigi, N., Jafari, E. et al. Exploring the efficacy of FAPI PET/CT in the diagnosis and treatment management of colorectal cancer: a comprehensive literature review and initial experience. Clin Transl Imaging (2024). https://doi.org/10.1007/s40336-023-00609-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40336-023-00609-w

Keywords

Navigation